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ABSTRACT

We develop a geometric approach to algebras in congruence medular varie-
ties. The idea of coordinatization of lines in affine geometry finds an
almost perfect analog in the coordinatization of algebras.

The geometry is the congruence class geometry, i.e. the subspaces are the
blocks of congruence relations.

We show that congruence modularity guarantees that the congruence class
geometry behaves nicely, because the Desarguesian and the Pappian theorems
are true, if interpreted correctly. The innocuously looking "Shifting
Lemma" is the basic and powerful tool we need.

The obstacle to a perfect coordinatization is a congruence relation called
the "commutator". The commutator is zero iff nonparallel lines have preci-
sely one point of intersection.

This approach leads to a simple geometric development of commutator theory
for arbitrary congruences. Results about affine algebras on the one hand
and about distributive varieties on the other hand are tied together where
only the commutator appears as a parameter. For the extreme values of this
parameter we find theorems about affine, nilpotent and solvable congru-
ences and varieties at one end and theorems generalizing Jbnsson's lemma
at the cother end. A radical, JE, is defined and we show that Jbnsson's
lemma is true for every algebra A/VE.

AMS (MOS) subject classification (1980): 08B10, 08BO5, 08A30, 08A05.
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PREFACE

Affine planes can be coordinatized by certain algebraic structures called
planar ternary rings. If the Desarguesian theorem holds, then a (generally
noncommutative) field is obtained. The algebraie structure can then be
used in turn to prove results which may be translated back into geometri-
cal theorems. The proof that every finite Desarguesian affine plane is
Pappian, using Wedderburn's theorem is a prominent example.

By the same token geometrical reasoning may assist the mathematician work-
ing on algebraic structures. In theories related to linear algebra, as for
example in ring - and module theory geometric intuition may suggest alge-
braic results and may be a guide to algebraic proofs. This method is not
limited to fields that essentially originated from geometry. Here we deal
with classes of algebraic structures, general enough to include groups,
rings and modules on the one hand and, lattices on the other hand, but ‘they
do not include semigroups, for example. We shall see that thereby we seem
to have found the right level of abstraction where a geometrical language
may reasonably be used and a geometrical intuition may be developped.

The key is that every (universal) algebra coordinatizes a pseudo-geometry.
This geometry was investigated and characterized by Wille in [41], he
called it the "Kongruenzklassengeometrie". It may be a geometry of a ra-
ther strange nature, but the fundamental notions like "points", "lines"

and "incidence" make sense, so as to allow us to draw pictures of geometri-
cal configurations, corresponding to algebraic contexts. These configura-
tions may then lead to a deeper understanding of the theory, but also
suggest proofs, which then have to be reformulated algebraically.

Here we make extensive use of this geometric visualization. We draw points
and lines to express and explain algebraic situations. Previously known
theories become clearer and new results are obtained. Indeed, by a conse-
quent use of the geometric method, some deep algebraic results may seem
more obvious because they are suggested by the geometry.

As we have mentioned before, the geometry may be very nasty in general,
and it was long believed that only the class of "permutable" varieties was
satisfactorily tractable by geometric methods. Those algebras share the
fundamental property that "parallelograms" in their Kongruenzklassengeome-
trie can be completed, i.e. given three points, there exists a least cne
fourth point, so that the four points form a parallelogram. Those algebras
comprise all classical structures mentioned above, so certainly they might
seem to form a reasonable level of abstraction. On the other hand, one
would like to include some more classes of structures into a systematic
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treatment. For example, the class of all lattices which does not have
this property.

The framework we have chosen is modularity. We assume that the algebras
in question have modular congruence lattices. This class is known since
Birkhoff [2] to include permutable varieties, and clearly lattices are

captured too, since in fact their congruence lattices are distributive.

Thus the difficulty is to find the right geometric properties common to
both kinds of theories. A very simple property, the "Shifting Lemma" was
discovered in [17] and its importance has become more apparent henceforth.
In fact, more-dimensional analogues 1ike the "Little Desarguesian theorem"
and the "Escher-Cube" could be proved [18], showing the richness of struc-
ture in modular congruence class spaces.

There is a broad spectrum of modular varieties, reaching from abelian
groups and modules at the one end to lattices or more generally to distri-
butive varieties at the other end. Moreover, given a modular variety then
after imposing appropriate conditions one often finds that either the
variety is affine (i.e. polynomially eguivalent to & variety of modules)
or it has typical features of a distributive variety. This dichotomy was
first noticed for permutable varieties.

Now, as we have said before, lattices and abelian groups seem to be modu-
iar out of different reasons and in fact they turn out as different ends
in a spectrum of modular varieties which lie in between. In fact those
ends could be isolated inside the subclass of permutable varieties. As an
example we mention R. McKenzie's results [33] and also [16]1. It was only
when J.D.H. Smith [36] introduced "aommutators" into general algebra, that
an overview over the subspectrum of permutable varieties could be handled.
Commutators in a way acted like a prism, making the spectrum visible.

J. Hagemann and C. Herrmann [24]1 managed to carry the commutator concept
over to modular varieties, proving many of its properties that now seem to
be fundamental for the theory. The sacrifice, however, was the loss of
geometric intuition, the complicacy of the concept, which made it extreme-
ly hard to handle.

Using the Shifting Lemma, a very simplified definition could be given in
[191, making it possible to give an elementary and geometrical develop-
ment of commutator theory. The theory has since been proven extremely use-
ful, pushing the theory of modular varieties forcefully ahead. Most promi-
nently R. McKenzie's work with R. Freese {13] and with S. Burris [6] has
to be mentioned here. Progress in other directions was also made in [21].

Let us now give a brief overview to the present treatise. After establish-
ing the fundamental concepts and notions in chapter 0, we introduce the
reader to the concept of modularity in chapter 1. The congruence class
geometry is developed in chapter 2, we prove the fundamental configuration
theorems, like the Little Desarguesian theorem, the Cube Lemma and the

vi
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Escher-Cube Lemma which will reappear throughout these notes. The syntacti-
cal description of modularity due to Day [9] follows in chapter 3, we try
to explain the geometry behind it. Chapter 4 provides a term which plays

a fundamental rfle in mcdular-varieties. The door is opened to carry re-
sults from permutable varieties over to modular varieties. The construc-
tion of the aforementioned term is an outstanding example of how geometry
provides the ideas for an algebraic proof. In chapter 5 we show that the
classical idea of coordinatizing the affine plane with an abelian group
has a direct counterpart in modular varieties. An analysis of the ingre-
dients leads to the investigation of commutators in chapter 6, the theory
is developed and the properties that nowadays seem to be fundamental are
proved. The famous Jonsson Lemma turns out to be a special instance of a
more general theorem for modular varieties. A radical /E is defined and
it is shown that Jbnssons Lemma is true for every algebra of the form
A/YE in a modular varietiey. A formula which shows that congruences per-
mute modulo some commutators allows us to give a Mal'cev type description
of modular varieties using ternary terms only in chapter 7. More evidence
is gathered that modularity lives between the poles of permutability and
distributivity. Theofems that refer to permutability are proved in chapter
8. Abelian congruences and corresponding affine algebras are then examined
in chapter 9 and nilpotent and solvable varieties characterized in chapter
10. In chapter 11 we look at the possibility of yet extending the frame-
work of modular varieties. FP-varieties seem to be appropriate for many
results. Their congruence class geometry has special properties only in
direct products of algebras. Terms being "n-ary homomorphisms" with re-
spect to other terms are studied in chapter 12, a theme which is intimate-
ly connected with commutators and coordinatization. Unitary groupoid ob-
Jjects in modular varieties (and in FP-varieties) are shown to be abelian
group objects.

vii
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0. FUNDAMENTAL CONCEPTS

This chapter summarizes fundamental notions and elementary results of ge-
neral algebra. We omit proofs since they can be found in most elementary
textbooks, such as GRATZER [141, or PIERCE [43].

Regarding cur terminoclogy we mainly follow [14]1. Our word "polynomial", how-
ever, stands for "algebraic function" as in [14]. We will in fact use both
words simultaneously.

Let & := (ng)y 1
is a pair A := (A,(f.). I) where A is a nonempty set and every f. is
- 1-1e ny % 1
=+ &

be a family of natural numbers. An algebra of type &

an n;-ary operation on A, i.e. a map fi: A

From now on we tacitly assume we have specified a type 4 so that all al-
gebras we deal with are of type a.

Let B be another algebra, i.e. B = (B’Cgi)iei)'

A map 4: A » B is a homomorphism from A to B if for every iel and
elements a,,8,,.--,3, ¢ A we have
A

¢(fi(al,---,ani}) = gi(¢(a1),...,¢(ani)).

If ¢ is injective it is called an embedding. If ¢ is bijective then
¢'1 is a homomorphism from B tc A. ¢ 1is then called an isomorphism.

We say A and B are isomorphic and write A % B.

A subalgebra C of A 1is an algebra C = (C,(h;); ;) where CcA and
o S
each operation hi is the restriction of the corresponding fi toe i

If D is a nonempty subset of A and for all dl""’dn e D we have that
i

,fi(dl,...,dni) e D then D = (D,(h;); y) with hy := fiIDni is a subal-

gebra of A. By abuse of language we sometimes phrase shortly: D 1is a

subalgebra of A.

The product I gj of the algebras gj has as underlying set the carte-

sian product Jed of the sets Cj and the operations are defined component-
wise. A subalgebra S of I C. 1is called a subdirect product of the

g
gj, if the restrictions of the canonical projections LE to 5 are still
onto.

A congruence relation © on the algebra A 1is an eguivalence relation on

A which is at the same time a subalgebra of AxA. For (X,y) ¢ 0 we
frequently write xey or x=y (mod o). The fact that © is a subal-

Received by the editors December 15, 1981.




2 H. PETER GUMM

gebra of AxA can be expressed by the implication

Xleyl’ S xn.eyn. => fi(xi,...,xn') efi(yi,...,yn_).
i i i it

This property is often referred to as the compatibility of © with the
operation fi'

If @ is a congruence relation on A and ace A we define
[ale := {xeA| x0a} and call it the 8-block of a.

The set A/0 := {fale] aeA} can be given the structure of an algebra
again by defining
fi([a1]9, = [an'JG} 1= [f(al,...,an_)]a.
t £
The resulting algebra is called the factor of A Dby © and
gt A > A/O
a + [ale is a surjective homomorphism.

Note that for an arbitrary homomorphism ¢: A -~ B the relation

ker ¢ := ((x,¥)] #(x) = ¢(y)} is a congruence relation and every con-
gruence relation arises this way, namely © = ker 7,. Moreover, if

$: A+ B is a surjective homomorphism then B and A/ker ¢ are isomor-

phic, in symbols B ¥ p/ker o.

Let now V be a class of algebras. V is called a variety if V¥V is
closed under the formation of subalgebras, homomorphic images and direct
products of any of its members. G. BIRKHOFF's theorem says that a class of
algebras is definable by equations if and only if it is a variety.

In a variety Y there exist free algebras EV(X) for every set X. Fy
is a functor, left adjoint to the forgetful functor into sets, in parti-
cular: For every algebra A in V and every map o: X +» A there exists

precisely cne homomorphism a: EV(X) + A extending «o.

If X is finite, say X = {xl,...,xk] then EV(X) can be considered as
the algebra of all k-ary V-terms with variables from X in the following
manner:

For p e Fy(X) and Ae V define a k-ary operation pé on A by
pé(al,...,ﬁk) := a(p), where o is the unique homomorphism from Fy(X)

to A with E(xi) = ay.

The k-ary operations thus arising on A are called term-functions. They

can also be characterized as those k-ary operations on A which can be
built up by superposition from the fundamental operations f; and the
n

projection operations ms: TRLE S N (al,...,an) - a

T
If n-k places in an n-ary term function are frozen with fixed elements
of A, we obtain a k-ary polynomial of A, frequently also called an

algebraic function of A.

We will have to take a closer look at congruence relations. If o is a
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congruence relationon A and Tt a polynomial'of A then 0 is compa-
tible with t. (Similarly the equality characterizing homomorphisms re-
mains true if £f. is replaced by any term-function.)

There are two trivial congruences O and 1 (sometimes subscripted as

OA and 1A) on every algebra A, given by

g = {(xx)] x4} “and

1

{((x,y)] x,7 e A}.

is called simple if there are no other congruences on A.

[ b

is called subdirectly irreducible, if A possesses a smallest nontri-
vial congruence relation u, called the monolith of A. G. BIRKHOFF's
theorem asserts that every algebra is a subdirect product of subdirectly
irreducible factors.

The intersection of an arbitrary family of congruences is a congruence
again, thus for a subset T g AxA there exists a smallest congruence re-
lation containing T which we will denote by <T>, or B(a,b) for

T = {(a,b)}. . R

A.I. MAL'CEV in [32] gave an explicit description of <T>A. This descrip-
tion specializes as follows: ia

0.1 Theorem: (i) If T is a reflexive symmetric relation, then
(a,b) € <T>p iff there exist unary algebraic functions rt ,...s7, and
(so,to),...:(sn,tn) e T such that
a = ro(so}
ri(ti) = Ti+1(5i+1) for 0.1 <n,
Tn(tn) b

n

{ii) For T = (lx,y)}: (a,b) ¢ g iff there exist unary algebraic
3

¢c_ = b such that

functions Tos==rsTnoq and elements a = C_,...,C,_ 95 Cp

s
{egscy,q) = {Ti(x),ti(y)} for 0 = i < m. i
(iii) A subset ScA is a class of some congruence relation on A iff
for all algebraic functions t on A we have either +(8) € 8 or
7(8)nsS = 0.

The congruences on an algebra form a complete algebraic lattice, in fact
a sublattice of the lattice of all equivalence relations on the set A.
We shall denote this lattice by Con(A). The join of two congruences e
and ¥ always contains the relational product ©o¥ and can be described
as

n times
ovy =l '{@o¥edo¥s ... o@o¥| nel}.

Since 600 = 0 by transitivity, it follows that evy = @e¥ Jjust in case
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that ©e¥ = ¥o@. We shall then say that © and ¥ are permutable.
Let now ¢: A * B be a homomorphism. If B 1is a congruence relation on
B then

Fe 1= ((x,y) e AxA] (6(x),4(y)) e B}

is a congruent relation on A. Incidentally ker ¢ = ?O and 3 is a
lattice isomorphism from Con(B) to the sublattice of Con(A) consisting
of all congruence relations on A which contain ker ¢.

For a ¢ Con(A) we get a congruence

$o 1= <{(8(x),4(y))| xayl>g on B.

One checks the relations

$$B < B and

$$u 2 a v ker ¢

with equality holding in both formulas if ¢ 'is onto.

If i 95 is a direct product, then the kernels of the canonical projec-
jed
tions will also be denoted as Ty Those congruences are often called

factor congruences. They are mutually permutable. Given a filter 0 on

the indexing set J, & congruence relation ey arises on defining:

aopb iff {died) ni(a) = ni(b}} e D. If D is an ultrafilter, the im-

portant construction of an ultraproduct I gdfav is obtained. It has
ied

important modeltheoretic properties, see e.g. [t iks




1. MODULARITY

1.4 Defindtion: A l4ttice L is modular if for every x,y,z ¢ L. the
implication

x>im = XAR{yve) = (xAVIvV:

holds.
An algebra A 1is called congruence modular if Con(A) is a modular

lattice. Similarly a variety V is called modular if every AeV is con-
gruence modular.

The following theorems will be used to provide us with a sufficiently
large class of examples.

The first theorem is again due to MAL'CEV. It describes congruence per-
mutable varieties, i.e. varieties all of whose algebras are congruence
permutable.

1.2 Theorem [32]: A variety V of algebras is congruence permutable if
and only if there exists a ternary V-term p(x,y,2z), such that the equa-
tions p(x,y,y) = ¥ and p(x,x,y) = y are true in V.

To generalize the concept of permutability of congruences we define for a

natural number k and congruences GO and 61:

Definition: Congruences % and 01 are k-permutable if

eo°01°eo° cee 0B < elnaooalu e 0 where e is 1 or o, depen-

1-¢?
ding on whether k is even or odd, and both sides are k-fold relational
products. An algebra is called k-permutable, if any two congruences on A
are k-permutable. Similarly a variety consisting of k-permutable algebra

only will be called a k-permutable variety. :

Thus permutability is just 2-permutability and k-permutability implies
(k+1)-permutability.

J. HAGEMANN and A. MITSCHKE obtained a characterization of k-permutable
varieties reminiscent of MAL'CEV's theorem, and including this for the
case k=2 [25]:

1.3 Theorem: A variety V of algebras is k-permutable if and only if
there exist ternary V-terms Pgs--sPy such that the equations

po(x,7,2) = x
P;(X,%,¥) = Py, 4(x,¥,y) for 0 s i<k
P (¥,¥,2) = z
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are true in V.

To see that 3-permutable algebras are congruence modular, first shown by
B. JONSSON [29], we note that joins of two congruences & and ¥ 1in
this case are computed as @eo¥e@. Here the modular law reduces to

azy => aA(yeBey) g (a AB)vy. For (x,y) from the ieft hand side
there exist u,v with xy u B Vv yy and consequently X o u and Vv a ¥.
« is transitive, yielding u a V. Finally x vy u (cAB) v y y hence
(x,y) ¢ (anaB) VY.

Many examples of congruence modular algebras are in fact congruence distri-

butive. B. JONSSON characterized varieties containing congruence distribu-
tive algebras only, as follows:

1.4 Theorem ([28]1): A variety V of algebras is congruence distributive

if and only if for some natural number n there exist ternary V-terms
qO,...,qn such that the equations

X

q,(%,¥,2)

X for all 0 = 4 g Ny

1"

q; (%,¥,%)
qi(x,x,yJ = qi+1(x,x,YJ for 0 <1i<n, 1 even.
a; (%,¥,¥) = Q4,4 (X.¥,¥) for O < i<n, i odd

z

"

q,(x,¥,2)
hold in V.
Now we are able to list many varieties which are congruence modular:

Groups: Groups are permutable according to MAL'CEV's theorem.

Plx,y,8) == x-y'l-z is the term witnessing permutability.

Rings: Same as above with p(x,y,z) = X-y+z.
Quasigroups: p(x,y,2) := (x/(y\y))(y\z) is a term for MAL'CEV's theorem.

Median algebras: Those are algebras with a ternary "majority term" i.e.

a term m(x,y,z) satisfying the equations
m(x,Xx,y) = m(x,¥,x) = m(y,x,x) = x. Median algebras are con-
gruence distributive, JONSSON's theorem applies with n=2.

Lattices: Lattices are median algebras. Take
m(x,y,z) := (xvy) s (yvz) A (z vx).

Implication algebras: 'They are groupoids (G,>) satisfying
(x+»y)+x = X3 (x+y)=>y = (y+x)+x; x=+ (y+z) = v+ (x+z).

Implication algebras are 3-permutable and congruence distributive.
See MITSCHKE [341 and HAGEMANN, MITSCHKE [25].

Boolean algebras: Boolean algebras are lattices, hence congruence distri-

butive. But they are also rings, hence permutable.
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So far all of our examples were already either permutable or distributive.
For an example of a congruence medular variety which is neither permutable,
nor congruence distributive we introduce:

Generalized right complemented semigroups: These algebras have two binary

operations - and =, satisfying:
x+(xxy) = y-(y*x)
X {y*¥) = X,

Generalized right complemented semigroups have 3-permutable congruences.
HAGEMANN and MITSCHKE showed that their theorem applies with
P,(X,y,2) = x-(y*z) and Dp,(x,y,2) = z-(y*x).

To see that generalized right complemented semigroups are in general non-
distributive, take a ring R with unit, in which 2 has an inverse.
Then define x-:y := xX+y and xxy := : (y=x) as operations on any module
over R.

Implication algebras are also models of the above equations. If we define
X.y := y»*x and ' Xxy := y»x then the above equations hold. See MITSCHKE
[34] for an example of a (three-element) implication algebra with non per-
mutable congruences.

If a further equation
(x-y)%xz = y*(x*z)

is added, we obtain the class of right complemented semigroups. See
BOSBACH [3] for the fact that right complemented semigroups are congruence
distributive.

Alsoc see the remarks at the end of chapter 7.



2. CONGRUENCE CLASS GEOMETRY

If V 1is a vector space then the blocks of congruence relations on V

are precisely the affine subspaces of V. With this example in mind, geo-
metrical terms suggest themselves for the study of congruence relations.
Indeed the system of congruence classes of an algebra A can be consider-
ed as a geometry, the so called "Xongruenzklassengeometrie". This geometry
was introduced and investigated by R. WILLE in [41].

We do not use any results from this approach, yst we adopt and heavily ex-
ploit the geometrical viewpoint, by using a pseudogeometrical language and
by drawing geometrical figures.

Thus we draw points for elements of a given algebra A and we connect two
points, say x and y with a line, if x and y are congruent modulo
some congruence relation’ (or some compatible relation), say ©. In this
case we label the line connecting x and ¥y with the symbol @ and
think of it as representing all points from ([xJe when @ is a con-
gruence relation. Two lines will be drawn parallel, just in case they are
classes of the same congruence relation.

As an example, the following picture expresses the relation x @ y ¥ z:

Moreover we will have ©@o¥ = ¥Ye& 1f and only if for every X,¥,z € A,
the above picture can be completed to

for some uce€A.

Thus permutability of congruences can be expressed geometrically by the
existence of the "lU-th parallelogram point". (x,y,u,z) in this case




GEOMETRICAL METHODS IN CONGRUENCE MODULAR ALGEBRAS g

would be called a O-¥-parallelogram. MAL'CEV's term p(x,y,z) always pro-

vides us with one 4-th parallelogram point. From the equations p(x,y,y) =x
and p(7,y,z) = 2 and the relations x ©y ¥ z we infer
p(x,y,2) 0 ply,y,2) = z and bp(x,y,z)} ¥ p(x,y,y) = x.

In congruence modular algebras such a strong geometrical tool cannot be ex-
pected, however the following "Shifting Lemma" is still powerful enough to
replace the modular equation in everything that follows.

2.1 B8hifting Lemma: Let «,8, and y be congruences on a congruence
modular algebra A and let x,y,z,u be elements of A. If oarfg =y
then

X z X Z
B \ \ \
1 \ \
1
7 / f
s s
¥ u 5 u
implies !

Proof: We have (x,y) € an(Be(any)ef) c ara(BV(any)) c (aAB) vV (any)
by modularity. From the assumption that oA B < y it follows that
(xaplilte .= B

If the condition «aAB <y is dropped in the Shifting Lemma the hypothe-
sis still guarantees that (x,y) ¢ (aaB)vy; simply replace y by

v' = (aa8) vy and apply 2.1. Thus both versions are equivalent. We will
find that within a variety the validity of the Shifting Lemma is equiva-
lent to modularity. In fact, the Shifting Lemma will replace the modular
law in everything that follows. In particular for the rest of this chapter
we will assume that the Shifting Lemma holds in AxA. Thus we are able
to obtain "higher-dimensional" configuration theorems which are important
for later chapters. Those theorems were found in GUMM [18]. Our original
proof used the DAY-terms which we shall introduce in the following chapter.
The proof was shortened by TAYLOR and by WOLF, to the form we present it
in here.

2.2 Theorem: Let @,2,,a, and ¥ be congruences with Bray < ¥ 2 OAa,.

If X,¥,2,0:x",¥';2',u' are elements of A then

implies
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Proof: The pairs (x',x), (y',¥), (2',2), (u',u) are elements of ay
which is a subalgebra of AxA. Defining congruences 1 X, and V¥ xa,
and ©0x0 on oy by

(u,v) 1xa, (r,s) iff vV oa, s
(usv) ¥ X 0y (r,s) TEE uy¥r and V a, S

(u,v) exo (r,s) iftf el cand ¥ Bis

we obtain

(x',x) 9x0 (z',2)
N
\\
\
\
1xa, Txa, } ¥xa,
/
7
//
(ylsy) Ox0 (u',u)

'

If we are allowed to apply the Shifting Lemma, then from

(x',x) ¥xa, (y',y) we get immediately x' ¥ y' and we are done. However,
we have to check that exe A 1 Xa, S ¥ xa,. Thus let

(a,b) 9%x0 A 1xu2 (¢,d). First of all (a,b) e ay and (c,d) e aq. More-
over (b,d) € OAcy nence (b,d) € ¥ by assumption. Hence

The other assumption, ©@Aa, = ¥ allows us to apply the Shifting Lemma in
this situation, yielding (a,c) e Y.

Mainly we are interested in the following two special cases. Firstly,

letting x=x' and z=2z' we obtain

2.3 The Little Desarguesian Theorem: Let ©, a4, @5 and ¥ be con-
gruences with @ae, < ¥ 2 Ora,. Then

7 ] %! %X 0 o
o (o} \
! y 1 Y WY
Z z! z z3 \
\
&5 Oy \
4 ¥ )% ¥

implies
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This theorem is particularly interesting, since R. FREESE and B. JONSSON
[11] have shown that the congruence lattices of algebras in modular varie-
ties are arguesian. Thus our theorem may be considered as an affine coun-
terpart to their result. The existence of such an affine counterpart is
surprising since no transition between the projective geometry of algebras
(as manifested in their congruence lattices) and the affine geometry (Kon-
gruenzklassengeometrie) is known.

Our next specialization of 2.2 has many appiications in what follows. In
particular it guarantees the closure of the "REIDEMEISTER configuration"
which was first shown and applied in [16] and [171.

2.4 Cube Lemma: Let 8,s @, and ¥ be congruences with 0,48, < ¥ and
let x,y,z,u,x',y',2',u' be elements of A, then

3l zt ! z!

implies

Proofi: Set ¥ = ay, O, S 05 9y 1= in 2.2. 0

o
A "twisted" form of 2.2 will be needed to give us the closure of the
"Desarguesian configuration", as termed in [17]:

Because of apparent common features of the configuration with pictures of
M.C. ESCHER we call it

2.5 The ESCHER Cube: Let ©, ay, o, and ¥ De congruences with
OAul ¥ 2 Bra, and let X,y,Z,u,x',y',2',u' be elements of A. Then

x% 0 z! x' Q z!
s
¥ y,’ ¥
yr ' yll »
u
0 ul ©
u
A
C"T z 0‘1
CI.Z “2
Yy 8 * Yy o X
implies

Proof: Look at @, as 2 subalgebra of AxA and define congruences

oxa, 1xp and ¥x0 on the algebra in the obvious way to obtain

e
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(x15x)
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Sees (z',2)
b
\
|
1x9 1x8 ] ¥x6
/
BXCLZ (ur,u)

If the conditions for the Shifting Lemma are satisfied we get

(x',x) ¥x¢ (y',y) and in particular x' ¥ y'. Thus to show that
Oxa, A 1x6 < ¥x8 we take ((a,b),(c,d)) from the left hand side and ob-
tain:
a %1 b
\
\
9 of | ¥
/
/
P
c oy d
To see that (b,d) ¢ ¥ we use (b,d) ¢ © and (b ¥ee o5 and our hypo-
thesis. Thus the latter Shifting Lemma provides for Case) e ¥, d.e.
((a,b),{c,d)) from the right hand side.

Again we are interested

with 2z' and y with

in two special cases. Firstly, on identifying
yl’

z
we obtain

2.6 The Little Pappian Theorem: If o, a4, a5, and ¥ are congruences
with Ora, = ¥ 2 9Aa, and Xx,y,z,u,x',u' € A then
x! u 7 % u z
/
7/
/
/
A ¥ T,
o . v
implies
y X u' y X u'
Similarly, on identifying oy with ¥ and u with u' we obtain
2.7 Lemma: Let 90, 01 and Y be congruences with 90A01 < ¥ and

X,¥,2,u,x',y",z"

elements of

A then
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el G)1 z! x? 61 7
rd
?,’
- /Ul f % S 5
¥ L 4
@o G)O
implies
y X ¥ X

This lemma, as will turn out later is precisely what is needed to have
groups in modular varieties being abelian.




3, THE DAY-TERMS

For a single algebra the Shifting Lemma is not equivalent to congruence
modularity. If all algebras in a variety V satisfy the Shifting Lemma
then V is congruence modular as we shall see. As an intermediate step we
will use a strengthening of the Shifting Lemma. We shall call it

3.1 The Shifting Principle: Let a and y be congruences and A a re-
flexive, symmetric and compatible relation on A with (anh) < v € a.

For any elements X,y,Z,u € A

X A z X A z
LY / \

X / \

1 \

a a Iy ¥ a a Iy

” \ ]

“ ’ b : /
Y A 1 implies Y A u

The proof that the Shifting Principle holds in a modular variety will have
to be postponed for a few pages. We shall first show that the Shifting
Principle implies congruence modularity.

3.2 Lemma: If the Shifting Principle holds for any algebra A then A
is congruence modular.

Proof: The proof is based on an idea of A. DAY [9]. Suppose a=y and B

are congruences. Then

e A (Bvy) = ., onh
nelN

where

A t= AnuYns
Thus it suffices to show that
“"’\-n c (aag) vy for every nelN.

For n=0 this is trivial. Assuming then that an#f, < (aAB) vV v,
(%,9) € anfy 4 implies that (x,y) € a n (Aknvos) c xun Ly siye )
Thus there exist u,v ¢ A with

14
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X A u
N
\
\
o a Py
I
/
s
y Ak v

Replacing y by (@AB)vy then the inductive hypothesis makes the Shif-
ting Principle applicable, yielding (x,y) € (aaB) v y.

To prepare an immediate application, let us define:

3.3 Definition: An algebra A has regular congruences, if every congru-

ence is uniquely determined by any of its classes.

J. HAGEMANN used R. WILLE's Mal'cev-type characterization of regularity
[41] to show that varieties of regular algebras are congruence modular

(and even n-permutable for some n) [22]. Refining this theorem, S. BULMAN-
FLEMING, A. DAY and W. TAYLOR proved [41];

3.4 Theorem: If all subalgebras of AxA have regular congruences then
A is congruence modular.

Proof: We prove the Shifting Principle, namely, with notation as in 3.1
we take A any reflexive subalgebra of AxA and define congruences axy
and yxy on A by

(a,b) axy (¢,d) iff a aec and by d

and (a,b} yxy (c,d) iff a ye and b y d.

Now for an arbitrary aeA lock at the (a,a)-class of axy. Namely, if
(a,a) axy (r,s) we get (r,s) e a since ysa and o is transitive.
Hence (r,s) € Ana, therefore (r,s) € vy, yielding (a,a) yxy (r,s) by
transitivity of y. We have just shown that ([(a,a)] exy = [(a,a)] yxy
and may now infer axy = yxy by regularity. Thus (x,z) yxy (y,u) in 3.1
hence x vy y.

Note that in fact we have shown slightly more, namely that c-regularity

implies modularity. Here c-regularity is a weakening of the notion of re-
gularity. Algebras are supposed to have a constant ¢, and every congru-
ence is supposed to be determined by the class containing the constant c.

We can now state and prove A. DAY's Mal'cev type characterization of con-
gruence modular varieties [9]. The following chapter will very much depend
on a deeper understanding of the geometrical meaning of those terms.

3.5 Theorem: A variety V is congruence modular if and only if for some

natural number n there exist quaternary terms m “e sy such that the

0!
following equations hold in V:
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(MO) mo(x,y,z,u) = X

(M1) mi(x,x,y,y) X For A Daseinsim,
(M2) mi(x:y'sxsy) = mi,'_l(xsy.lxs:)") for 0 =1 s n, i even

(M3) mi(x,y,z,z) = mi+1(x,y,z,z) for 0 <i<n, i odd

(M4) mn(x,y,z,u) %

Proof: (existence):

Let EV({x,y,z,u}) be the free algebra in V freely generated by the set

X = {x,y,z,u}. For a,b e X let 8., 4y be the smallest congruence re-=
3

lation on EV(X} containing the pair (a,b). Thus for

a = e(x,y) Ve(z,u)’ g = G(X’Z)v a(y,u) and y := e(z,u) we set
5 := (arg) vy to have the situation
X B z
~
\
\
a }6
L /
/
y u

The Shifting Lemma hence yields (x,y) e (aAB) vy 1i.e. there exists a
number n such that (x,y) 1is in the n-fold relational product of oaAB
and y. More precisely, for n there exist elements m of EV(X)

such that the following relations hold:

s vl

02 n

(m0) IR

{(m2') mi(e(x,y)v B(z,u)) A (G(X’Z)v e(y,u)}mi+1 for i even, 0O<i<n

(m3') m.

5 e(z’u)mi+1 for 3 9ddy O-= 1 =

(m4) m, = ¥s

(m2') together with (m3') may be replaced by

(m1) my e(x,y) Ve(z,u)x for all 0 s 1 s n
(m2) m; e{x,z)v G(y,u}mi+1 for i even, 0 =1 <n
(m3) my G(z,u)mi+1 for i odd, O < 1 < n.

Since every element of EV(X) may be written as a quaternary V-term, and
PRRREL satisfying the
equations (MO),...,(Mt) as they correspond to the relations

(D). 5 cveze s (ME) o

using MAL'CEV's argument 7321 we obtain terms m

Sufficiency: We prove the Shifting Principle 3.1.

With the notation of 3.1 we define elements m; := mi(x,y,z,u) and
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Ei v mi(x,y,x,y). Then the equations for the m; ensure us of the rela-
tions

Sl m; = mi(x,y,z,u) o mi(x,x,z,z) = %= for lgll i

s2: m! = mi(x,y,X,YJ a mi(x,x,x,x) = x as well as

S3: Ei = mi(xsysxsy) A mi(x:y)zsu) = Ei

81, 82 and S3 jointly imply mi y my for all i.
For i even we have mi = mi.,q» therefore with the above
34 m;, y my,, for i even. For i odd the corresponding relation

follows from

Ei = mi(st:Z:u) U mi(x:y’z:z) = mi+1(x,y,z,z) Y mi+1{x,y,z,u) = Ei+1'
Therefore with transitivity of vy we obtain

e N eIl T SRR Nl SReie Ba )i e e

Now 3.2 completes the proof.

As a corcllary we obtain

3.6 Corollary: 1In a variety of algebras'the Shifting Lemma is equivalent
to modularity, and both are equivalent to the Shifting Principle.

It is worthwile, to look more closely at the points m; and Ei con-
structed in the above proof. Let therefore B8 and Y be congruences and
X,¥,%Z,u be points with

Under which conditions do these points form a B-y-parallelogram, i.e.
when do we have x = y(mod y)?

As above we will define again my := mi(x,y,z,u). Then we get:
(a) X = my by (MO)
(b) my Bmy,, for i even by (M2)
(c) My oy Myoq for i cdd by (M3)
(djs gmae= ¥ by (Mi)

This situation is shown in the following figure (using n=7).
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\
%]

m i u
~6 y=m, 8
One direction of the following lemma is obvious now:
3,7 Lemma: X v ¥ if and only if my ¥ M. for 1 even.

Notice that we had no chance so far, to use the powerful egquations (M1).
Only if we start with a completed parallelogram wWe can use (M1) and obtain
Ei(x,y,z,u) Y gi(x,x,z,z) = x. In particular m; v Hj.4 follows, finish-
ing the proof of lemma 3T

Putting together a compieted parallelogram and an uncompleted parallelo-
gram, so that corresponding points are congruent modulo some CONEruence
relation «, we obtain the following familiar figure:

X=m
m, =0 B e
Y
L5 i
me ¥
m
” =4
& Y=ty G
Mg 4
' ¥ '
1]14’—_"'2( >Zl
¥
1 - A= = m;
— =
1| /’Y 7 s
m
'Y_S - 4
i i
s TN y'emy : u'

Thus all we need for showing X v ¥ is, to apply the Shifting Lemma to
the situation
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—i i+1
B
a a
8
m! ~o e 7
-1 A A S —1 whenever i is even.
Y

Thus all we need is the condition aaAB s y. This is precisely the origi-
nal proof for the cube lemma.

Clearly we can easily formulate a theorem having as special cases all the
configuration theorems of the preceding chapter. We call it the Parallelo-

gram Principle:

3.8 Parallelogram Principle: To prove that (x,y,z,u) with

X B zyugy forms a y-B-parallelogram, find a B'-y'-parallelogram
(xt,y',2"',u') such that (x,x'), (y,y'), (z,2') and (u,u') are from
some congruence a. If (av(B'Aay')}) A B8 s y holds then (x,y,z,u) is a
y=B=-parallelogram.

Loosely spoken: "Look along some congruence a onto a completed parallelo-
gram".

To prove it, just follow the reasoning after 3.7 with 8 and vy re-
placed by 8' and y' in the completed parallelogram. The only crucial
step is the application of the Shifting lemma. In the picture of the pre-
ceding page replace B8 by ¢ := Bv (8'Ay') and y by

¥ := (aa¢) v (B'Ay'). Thus the Shifting Lemma yields Ei pAY m' hence

i+l

(m;om; 4) € [([BV (B'ay')laa) v (B'Ay')IAB =
[Bv(B'Ay')]l A [av(B'Aay')]AB =
fav(B'ay')IaB = v.

=i+l

"




4. A SIXARY TERM AND ITS APPLICATIONS

In the last two chapters, notably in the "parallelogram Principle" we de-
veloped a method for showing that four given points form a parallelogram.
There is, however, no method visible to construct a fourth parallelogram
point from three given ones. Clearly this is not possible in general,
since it would imply congruence permutability. It turns out though, that,
given some auxiliary points and congruences, parallelograms can be comple=-
ted. In particular, parallelograms with one pair of sides being lines of a
factor congruence can always be completed (Corollary 4.5). This chapter
will in fact provide a term p, doing this uniformly throughout the va-
riety.

The construction of p relies almost exclusively on the geometrical vi-
sualization developed in former chapters and provides an excellent example
of how geometry can inspire and lead algebraic computations. Thus instead
of just writing down P and proving the characteristic relations, we will
include the geometric reasoning which necessarily leads to the discovery
of p.

The usefulness of p will become apparent in later chapters. In many in-
stances this term simulates MAL'CEV's term from 1.2, thus allowing us to
carry many results about permutable varieties from [16] over to modular
varieties. In particular the methods of coordinatizing algebras in permut-
able varieties as developed in [16] need precisely Corollary 4.5 as an
additional ingredient for being valid in modular varieties. This has been
worked out in [171.

4.1 Theorem: In a modular variety V there exists a 6-ary term
p(xl,...,xG) with the following property: Let @, 94 and Y be con-
gruences on Ae v with 84 A0y vy and let a,b,c,d,e,f be elements of
A. Then the relations

s g : b

¥ ey

d €] c e
o

imply that p := pla,b,c,d,e,f) satisfies

20
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a e0 £ b
7
el
$/ ¥ 61
o
/ O O
B d Oo G £

This term p thus gives a fourth parallelogram point p for a,b and ‘¢
with d,e,f being auxiliary points.

2

Let us then start with the hypothesis of the theorem. For the first part
of the proof we can do without the point f. Since we also assumed that
O,A 6, s ¥ we do not loose generality if we set 9 ARy =0 Firstly let
us apply the DAY-terms to find the points my i mi{a,d,b,c). Then the
equations (MO), (M2), (M3) and (M) yield the relations familiar from

e

(1) m. = a

-0
(2) m; o, m;,, for i even
(3) me ¥ ome . for i odd and
(4) m, = d.
m, "2 % b
Y
m
Lls) =3
4 ¥ @1
o M
b
m
-6 = c e
d‘E7

Now geometrically we have to shift the v-line b,c to join up with the
point a so, that it intersects the eo-line d,e in a point, which will
be p. This is not possible in just one step, hence we will proceed by

shifting the line-segments ms,my for 1 odd and then "add them to-
gether" to make them form the desired ¥-line starting at a. The problem

is that we have no control about as to where the m.

mssMms g line segments

are positioned "horizontally" (modulo @o).

A first step in overcoming this difficulty is the observation that the
segments my,my g do have points of intersection with the ei-line through
a.




22 H. PETER GUMM

Namely define:

mi(a,d,c,c) and

—i

ﬁi = mi(a,d,b,e).
Then
(5) @i = Ei+1 for i odd by (M3) and
(6) iy .= 0, a by (M1).

From the definition and using (5) we find

(7] m, ¥ f;, ¥m for 1 odd.

i+l
8imilarly for the ii we Tind the relations
(8) Ei o, My for every i by definition and

(9) ﬁi 0, a by (M1).
Using (9), (8) and (2) we conclude :

Y Y . . e . .
(10) ms O N0y My,q if i is even, hence with our assumptilon:

e A 3o
(11) me = Mg, If 1 A Even,

Now the relations (5) and (7) show that for i odd the line segment
m; ,m

—ir—i+l
follows from the relations (8), (9) and (11).

intersects a,d in ﬁi’ for i even, the corresponding fact

Qur last picture therefore needs to be corrected as follows:

asm smy | My b
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At this point we observe that the Oo-w-parallelograms given by three

points ii’ m. and @i for 1 o0dd can be completed. For this we define

@i 1= mi(a,d,c,e).

The relations

(12) ﬁi ¥ m, o fi; are obvious from the definition.

The points and relations collected so far provide a proof of the following
lemma which is an important intermediate step in the proof of 4.1.

4.2 Lemma: There exist terms s_,...,s in every

o n-1 @and ti""’tn-l
modular variety such that with the hypothesis of 4.1 we have for

Ei i= ti(a,b,c,d,e) and 34 17 si(a,b,c,d,e) that a = 54 d = Sp-10
©_ s <]

and s; Y t;., 6, 8;,4 04 8; for every i s n-2.
Proof: Define
: M (X Xy Xy X)) i odd
3 1°? u: 3 »
ti(xl’XE’XB’xu’x5’x6) = ‘~ X 343

mi(xl,x“,xz,xj), i even.

and

.-

W, (X, XX s¥a), i 0dd
Si(xl’XZ’XS’xh’x5!x6) e { ;B i B e

mi(xl’xﬂ’XZ’XSJ’ i even.
then in our previous notation

for i odd

for i even
and

M. for i odd

n

m. for 1 even.

Now the obvious idea, motivated by the geometry is to apply Lemma 4.2 onto
itself. This will become clear by looking at the picture on the next page.

Applying Lemma 4.2 first yields us points Eys-eesbpqy @nd 5,08, -

Then we shall construct new points a~ and a' in the shown position.

After having done that we shall apply Lemma 4.2 again but now replacing a
by a1 and d by dl. This way another collection of points

Ei, E%, aataly Eé-l and st E%: vy st is obtained. Now the choice of

=0? =n=1
the points al and d' will guarantee that 51 = £,. This way we have
prolonged the short segment a,ﬁi by the segment EI,E%, which is just
a parallel shift of il’El' Thus continuing with the new points a2 and

da, and so on, we manage to connect all segments s.,t

85:%41 toO finally end
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up with the desired line a,p.

a a=s f b
aZ [s]
KP4
25 T s
t
2 5 7122
1J
T
"”f” e l////
Y.

P a a

We have promised to construct p as the value of a term. But our plan,
presented above can easily be modified this way. Thus for the proof of
4.1 we define terms

ao(xi, L iy x6) S
ho(xl, il x6) = X,
A S LR

o
and ti(xl’ wrerirs x6) ti(xl, sy x6) as well as
sg(xl, A xs) 1= Si(xl’ e ey xs) where the t; and s; are the

terms from Lemma 4.2. Further define recursively for 1 < k < n=1:

k k-1
a {xl,...,xs) 1T by (x1’x2'x6’x1’x2’x6)

t

dk(xl,...,xs) tﬁ'l(xu,xs,xj,xu,x5,x3)

"

tg(xl,...,xs) ti(ak(xl,...,xs),xz,xj,dk(xl,...,x6),x5,x6)

si(xl,...,xﬁ) s si(ak(xl"'"XG)’XZ’XB’dk(X1""’XG)’XS‘XG)

Let us agree that with a*, &, s¥

Erp EE we mean the result from applying
the term with the corresponding name onto the points a,b,c,d,e,f (in

that order).

We need to show five relations:

(13) 2° 84 ak
k k
(14) a 0, a and 4" e, d
k z
(15) £y 8, 5 for 1 s 1 < n-1
(16) §¥ o.8; for isn-

3
k
(17) Ly, Y 2-
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The first four relations are easy namely

+1 k k +1
gk = ty,q(a,b,f,a,b,1) 0, tk+1(d,e,c,d,e,c) = gk

1 k k
§k+ = tp4q(a50,0,a,0,1) 0, trsi(a,a,a,a,2,2) = a

1 }
aft - t§+1(d,e,c,d,e,c) 85 t,4(d,d,d.d,d,d) = a

since all the terms m. and hence all their composites are idempotent.
To prove (15) and (16) we need (14):

L1

1
®
=
fo 7

k k
= ti(a sbgeqd e, t) % ti(a,b,c,d,e,f)

e b

Kk k
= si(a shytyd yez0) o, si(a,b,c,d,e,f)

Clearly (17) is the crucial relation. We use induction on k. The case
k=0 comes from 4.2. In the induction step we first use (15), (16) and
Lemma 4.2 to show that

(18) E§+1 ec Ek+1 Bo Sp+1 ao Ei:i'
Now we apply 4.2 again with a replaced by §k+1 and d replaced by
gk+1. Thus we obtain §§:i 04 §k+1. On the other hand
ék+1 = t§+1(a,b,f,a,b,f} 8y t§+1(a,b,c,d,e,f) = §§+1. Thus
E;Ii 04 E§+1 and §§:% e, §£+1 from above, yielding
Kads _ .k

(19) Spe1 = Liaq

according to our assumption that 05 A 61 = 0. Using the inductive hypo-
thesis and Lemma 4.2 we finally arrive at

k+1 T R S e ot b Sk

Eren = Frao(a i1 Hac,d Sjesd = Spgq T B5
proving (17).
Hence defining p(xl,...,xﬁ) iz tﬁ:?(xz,...,XG) we combine (15) and (17)
to have for k = n-2:
n-2
p(a,b,c,d,e,f) =t 0, t 4 0,d and
-2
pla,b,e,d,e,f) = £77 v a.

This finishes the proof of 4.1.

We can use the techniques from the above proof to make the following im-
provement:

4.3 Theorem: There exists a ternary term t(x,y,z) in every modular

variety such that given congruences o <] and ¥ with 8,70 < ¥ and

of 1

elements a,b,c,d,e,f with
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a 0 £ b a £ b
61 ¥
implies
d c e t d c =
with & := t(d,e,c). Moreover, the equation t{x,y,y) = x holds in ¥.
Proof: Define t(x,¥:38) = p(x,y,z,x,y,z), then

t(d,e,c) = pl(d,e,C, d,e,c) 9y pla,b,c,d,e, f) and

t(d,e,c) 8, t(da,d,d) = 4 6,4 p(a,b,c,d,e,f).

Thus t(d,e,c) 0,484 pla,b,c,d,e,l).

To see that the equation t(xX,¥,¥y) = % holds in V, take an algebra
AeV and X,y ¢ A. Consider the direct product AxA and set

60 B P
e =c = (y,x) and d = ({%;x) Lhe geometric conditions demand that

8y = Ty and ¥ := 7;. With a = (x,y), b =1 = (3,9),

t((x,x),(y,x},(y,x)) has to be (x,x). Evaluating the first component
gives us t(X,y,¥) = X.

4.4 Corollary: Let 045, 8 and ¥ be congruences with

9,004 S ¥y < eovei. If @y permutes with ©4 then ¥ permutes with 8,
and with 84.

Proof: Suppose 5 Dt then (b,c) e © °91’ (bye) ¢ 04°8, and
(iEzcYie I o8 = g o8 o61 € 8,°9) £ 9,°9, imply the existence of further
points d e,f w1th the conflguratlon of U4.3. Applying 4.3 therefore we
get a ¥ p(d,e,c) 0, €.

The form in which this corollary usually will be applied is as follows:

4.5 Corollary: Let B = T Ai be the direct product of the algebras
iel

Ass i I. Then every congruence relation on B permutes with every factor

congruence.

This corollary has many useful applications in GUMM, HERRMANN [21] where
it guarantees that certain lattice theoretical decompositions (in the con-
gruence lattices) actually yield algebraic decompositions.

More applications are provided in the following chapter. The following
corollary appears in WERNER [39] under the assumption that B has 3-per-
mutable congruences:

4.6 Corollary: Let B = n_A; be the direct product of the algebras
iel
¥ 5i’ ieT. For a subset 3 cl let =g be the canonical projection onto
¢ = 1 Ai. For any congruence © on B, the image of © under
1eS -

ng (= {(ns(a),ﬂs(b))l (a,b) ¢ 0}) is a congruence relation on C.




5. COORDINATIZATION

To coordinatize a line & in Desarguesian affine geometry we would embed
£ in & plane and choose two more lines, &' and " to obtain a set of
three mutually nonparallel lines. After choosing an element ¢ from &
arbitrarily, two points x and ¥ on £ are added according to the
following figure

o X Y X+y

where horizontal, vertical and skew lines are lines parallel to &, &'
and 2",

This construction is known to yield an abelian group G = (2,+,0). More-
over the particular choice of o is irrelevant because, treating o as
a variable, we actually have defined the ternary operation x-o+y.

In this chapter we will do precisely the same thing as above with an alge-
bra A in a modular variety V playing the r8le of the line &. The de-
tails we know about the congruence class geometry will provide us with the
necessary tools making this process work. In particular, we will assume
throughout this chapter that the algebra A 1is contained in a modular
variety V.

Thus we let the algebra A play the r8le of the line . Naturally our
"plane"™ will be AxA. There are two canonical congruences my and L
on AxA. Let g := [(a,b)]ar2 = {(x,b)]| xeA)} be a class of my for
some (a,b) ¢ AxA chosen at will. Clearly A may be identified with the
points of . For our line &' an obvious candidate is found in
{(a,b)]ni = {(a,x)]| xeA}. Now for 1" we would like to choose the "dia-
gonal", i.e. diag(A) := {(x,x)| xeAl. Unfortunately diag(A) need not
be a "line" in our sense, because lines are congruence classes. Thus we
are forced to consider the smallest line containing diag(A), i.e. we set

8 = <{{{x,x), (yoy)) | (x,¥) € ﬂxg}>éx£.
Then 4&" has to be [(x,x)]A for some {any) x from A.

27
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We will go through this chapter however, assuming that " is a line.
This assumption is equivalent to: ¢" dintersects ¢ and &' in at most
one point (see 5.1 below).

At this stage it is not clear whether we loose any generality by taking
this particular choice for &". Of course for a "third line" gU = N or—
der to qualify for the geometric construction explained above two require-
ments are essential:

(519 " intersects & and &' in at most one point, i.e.

if (x,y) and (x,z) are on &" then y=2 and symmetricall
if (y,x) and (z,x) are on 2" then y=3z.

(L2) " is long enough, i.e.
for any xeA there exist y,z € A with
(x,y) € 2" and (z X)zes S

The status of these requirements is made ¢clear in the following observa=
tion:

5.1 Lemma: Let 6 Dbe a congruence relation on AxA. Then the follow-
ing are equivalent: :

(i) Some class of © is a line satisfying (L1) and (L2).

(ii) Every class of © is a line satisfying (L1) and (L2).

(iii) e is a common complement %o the factor congruences on A xA,

daen Shevay = OVm, = 1 and

axh

BAT, = 9An2 = ngg

Proof: (i) - (iii): evmy = Ovmy = 1,,, comes from (L2). Suppose
eamy £ 0p,,, then for some X,y,Zz ¢ A with y # z we have

(x,y) @ (x,2). Choose uch with (u,z) e &" then (u,z) and (u,y)
are both on " by an application of the Shifting Lemma.

(u,y),/// (x,Y)

\

-
[ TR

LII b
(u,z) (x,2)

This contradiction proves (dii).

(iii) + (ii): (11) is trivial for every class of ©. Let ¢ be a class
of ©, xe¢A and (a,b) «¢. Then (x,x) w,v0 (a,b) and, since ©
permutes with w4 there exists a y from A with

{x:%) T (x,y) @ (a,b), hence (xsy) & B

In other words, © together with my and 7, form a O-li-sublattice

(named §3) of Con{AxA) as in the following lattice diagram:
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Next we show that we might as well assume that diag(A) is a class of
some congruence A. How to define a?

Suppose (x,y) A (u,v). Then certainly we want (y,y) & (v,v). By the
properties of © there exists a ze¢A with (x,y) o (u,z). Now the
little Desarguesian Theorem forces (y,y) @ {(v,z).

2
(u,v) (v,v)
TI'.I T]'_I
A (u,z) (v,2z)
(x,y) 2 r»y)

This reasoning goes back and forth between © and & thus we are forced
to define:

(x,y) & (u,v) :iff JzeA (x,y) © (u,z) and (¥,3) & (v,z).
We claim that this definition is equivalent to
(x,y) & (u,v) :iff Ja,bed (x,a) @ (u,b) and (y,a) @ (v,b).

Namely, if the right side is true then, since m00 = leA there exists

a zeA with (y,y) © (v,2) hence the Cube Lemma yields: (x,y) @ (u,z).

(u,z) (v,z)
d
’/
I’e
(x,y) Y,.y)
Uy (5.5 (v,b)
(x,a) (y,a)
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Now the properties of &, being a congruence relation on AxA with
diag(A) a class of 4 are easily checked.
Thus we obtain:

5,2 Lemma: There is a common complement te the factor congruences T4
and 7w, on AxA if and only if dgiag(A) dis a class of some congruence

on AxA.

From now on wWe may assume diag(4) being a line. Geometrically we know
then:

(1) any two lines (parallel to &, ' or ") intersect in at most
one point and
(12) any two nonparallel lines (of the above) intersect in at least one

point.

Thus addition on A may pe defined as follows: First choose some element
oeh. Elements X and y from 4, which correspond to points (x,Db)
and (y,b) on 2 will be added by finding the unique point (x,u) with
(o,b) & (x,u) and then constructing (X+y,u) with (x+y,u) & (y50)%

(x,u) (x+y,u)

(O,b) (x,b) {Y,b) (x+Y1b)

(11) and (12) from above zuarantee that this process works and defines a
binary operation + on A. First we show independence of the choice of
b. Thus suppose we had used ¢« A instead of b. Clearly we are done if
we can show (y,c) & (x+y,v) in the picture below.

(x,v) (x+y,Vv)
//
rd
rd
Fd
(o,c)

(x,c) (y,c)
(x,u)

(o). [%sE) (y,b)  (x+y,b)
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So the Cube Lemma gives the needed result. It is involved again in showing
associativity of +. This is a simple exercise. For commutativity we need
(x+y,v) & (x,b) in the situation below. 2.7 is all we need here:

(x+y,v)
”~
”~
-~
24
~
~
P
-~
//
-~
~
(o,b) (x,b) (y,b) (x+y,b)

Since o+x = x+0 = X is obvious from the definition we only have to find
-Xx. But, given x, -x 1is found as indicated below:

_(x,b)  (o,b) (-x,b)

Clearly we have that (A,+,-,0) is an abelian group by now. Had we chosen
a different element ee A, we would have obtained an isomorphic group
(A,é,g,e) with the isomorphism defined by x + x+e.

The arbitrariness of the choice of the neutral element is removed if we
consider the ternary operation x-y+z. Comparing the construction of
X=y+z with Theorem 4.3, we find that it agrees with our ternary term
t(x,y,2). In other words, x-y+z 1is given as a term function on A.

Let us now see how the other operations of A behave with respect to
x=y+z. To this end consider an algebraic function 1 on AxA. Since
Xx-y+z = w if and only if for some elements u and v the configuration

(Y|V) (x,v) {Z.?V) (X'Y*‘Z-V)

(Y»u] (X,U) (zlu) (X'Y"Z,U]

is given and since 1 preserves congruences on A xA, the image of this
configuration will be a configuration of the same kind. In particular,
looking at the first component Ty of 1 only, we find the equation

1, (x=y+z) = 14(x) - 1,(y) + T4(2).
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Clearly this extends to 1 being n-ary.

Let us collect the results achieved so far in a theorem:

5.3 Theorem: Let A be an algebra in a modular variety with diag(g)
being a congruence class on A xA. Then t(x,y,2) = x-y+z for some abel-
ian group defined on A. Moreover every n-ary algebraic function 1 on
A satisfies:

T(xl-y1+zi,.‘.,xn—yn+zn) = T(XqpeeaXy) = T(Pgseeeady) * T(ZyseeesBy)e

Algebras as in the above thecrem are called affine.

Affine algebras are almost modules. Let us work this out now. Again we
look at a special case first. Suppose that A has a one-element subalge-
bra {o0}. We then let o be the neutral element of our abelian group de=-
fined on A by X+y := X-0+y. Let R be the set of all unary algebraic
functions 1 on A which have no other constant than o in their repre-
sentation. (If o is given by some constant, R 1s just the set of all
unary term functions). The property of affineness clearly states that R
can be viewed as a subring of the endomorphism ring of (A,+,-,0). More-

over, if f(xl,...,xn) is a term-function on A we may write

f(xl,...,xn) = f(x1-0+o,o-o+x2,...,o-o+xn) =
= f(xl,o,...,o) - f(o,x2,...,xn) =
= f(xl,o,...,c) + f(o,xz,o,...,o) P +f(o,...,o,xn)

71(x1) + 12(x2) + ... :n(xn)
n
S e
g ki
where product is taken in the ring R.

Thus there is a module structure defined on A such that every operation
on A 1is linear. Moreover, if o is an algebraic constant then the 1li-
near operations are precisely the term-functions of A.

Now if A does not have a one-element subalgebra, then, after choosing

an element o, we let R(A) be the set of all unary algebraic functions
v on A having o as only constant and satisfying 1(o) = o. The above
arguments again tell us that R(A) is & unitary ring and every term func-
tion f(xl,...,xn) can be written as

f(xl,...,xn) = Xy *oa,

1 1

[ =1

1

where a 1is a fixed element of A, depending only on o and’ BL Sin
£ACE & = £loyew.,0) and ri(x) = 0 s 0a X505 - 5300 = £(05: wuy0)a

Thus, if A is affine, then A is polynomially equivalent, i.e. has the
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same polynomial functions as the module R(A)A'

There is another way to obtain the abelian group structure on A. Suppose
again that diag(A) is a congruence class for a congruence relation A
and of n

on AxA. From 5.1 & is a complement of = Moreover,

N i
since for any Xx,y,z € A we have (y,y) & (z,z) it follows that
tl(x,2),(ys2):02,2)) & (x,y), i.e. (t(x,y,2},2) A (x,y). From the pro-

perties of A the equations +t(x,x,z) = 2 and t(y,y,z) = z follow

(x,y) (y,y)

&

t,z) - (o,z) {z52) (yaz)

Hence t 1is a Mal'cev-term (as in 1.2), so A generates a permutable
variety. Let f be any n-ary operation of A, then in particular
(t(£(X),2(¥),£(2)), £(Z)) & (£(%),f(F))., On the other hand, since
(t(xi’yi’zi)’zi) A (Xi’yi) and from the compatibility of A we conclude
(£C6{xg,¥1529)5 -5 8(X,¥,,2,), £(Z)) & (£(%),£(¥)). Since the right
sides are equal, the left sides are congruent. Since their second compo-
nents coincide, so do their first components and we find:
EEIR{CIRAEADIETE JCIC R T JORE 7 S I I

5.4 Proposition: An algebra A is affine if and only if there is a
terrary term t(x,y,z) on A satisfying t(x,y,y) = x, t{x,x,2) = z
and if every operation f of A sommutes with ¢t.

Proof: t commutes with every operation means that ¢t: 53 + A 1is a homo-
merphism, so t commutes with every term function of A as well. In
particular it commutes with itself, i.e.

a) t(x,y,2) = t(t{x,y,y),t(x,x,¥),8(2,x,x))
bt (x,x,2),6(y,%,%),6(y,¥,x)) = tlz,y,x)

b) t(t(x,¥,2),¥,V)

"

t(E(x,y,2),5(¥,¥,7),t(y,y,v))
LOE(x,7,7),8(y,¥,¥)5t(2,¥,v)) = t(x,y,t(z,¥,V))

1

and similarly

e) tlx,¥y,tly,x%,¥)) = ¥.

Choosing an arbitrary element oeA and setting y=o in the above equa-
tions we find that x+y := t(x,0,y) defines an abelian group structure

on A with ¢t(x,y,2z) = x-y+z and neutral element o. The rest follows
with 5.3.

Let us keep a record ncw of the several characterizations of affine alge-
bras. (More of them will result from the next chapters.)



34 H. PETER GUMM

5.5 Theorem: Let A Dbe an algebra in a modular variety, then the follow-

ing are equivalent:

(i) A is affine.

(1i) A has a Mal'cev-term t and every operation of A commutes with
t.

(iii) There is a congruence relation © on AxA which is a common
complement of 1y and of T,

(iv) diag(p) is 2 congruence class on AxA.

(v) Every subalgebra off F Ax A is a congruence class.

(vi) 4 is polynomially equivalent to a module over a ring with unit.

Theorem 5.3 deserves another pemark: Since diag(A) is a congruence class
of a congruence A On AxA which is a complement of 7y and of Tas
and since all those congruences permute, we find that Ax4 T Ax(AxA),.
Since a subalgebra of A=xA, namely diag(a) is identified by &,
(§=4§)/A has a one-element subalgebra whilst this need not be so for A.
In particular, A and &/A need not be isomorphic. 5/& can also be de-
fined by changing each oﬁeration £ into a new operation 7 by
fv(xl,...,xn) 1= f(xl,...,xn) Liiprgs L Lo sa) Gyieldipe Lhe "linearization"
aY
1ity in section 9.

of A. This situation is examined more closely and in greater genera-




6. COMMUTATORS

So far we have assumed that diag(ﬂ) be a congruence class on A xA.
Suppose now this was not the case. We would then consider the smallest
congruence relation A such that diag(A) is contained in a A-class.
Thus we must set

b= <l06x), (7] (K,3) € AxAbp, -

If we do now try our coordinatization we have the difficulty that inter-
sections of aA-lines with 11~lines or with wz-lines need not be uniqgue,
hence the construction of x-y+z 1is not unique.

7 l

Thus we have (x,b) A (x,c) for some xeA. Fortunately the Shifting
Lemma tells us that in this case

(y,b) & (y,c) for every yeA.
Thus the following is a congruence relation on A:
1,13 == {(b,e)| Cx,B) & (x,c) for some  Xe A}
and it is equal to
{(b,e)| (by,b) & (b,a)}.

Factoring by this congruence relation we will indeed get an algebra

B = A/[1,1]1 where now diag(B) is a congruence class in BxB and hence
B is polynomially equivalent to a module. This will become clear later in
this chapter in a more general setting.

Let us now generalize the above notions to obtain the important definition
of a commutator of congruences. Let o« and B be congruences on the al-

gebra A. We think of o« now as a subalgebra of AxA and define a con-
gruence relation on o by

AS 1= <{((x,%),(¥,¥))| (x,y) ¢ B}>, -

35
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Then L[a,8] := {(b,c)]| (b,b) AE (b,ec)} is called the commutator of a
and B.

A{l
(b, c) € [=, B]

A \ B
\ / \ [(b, B)]a
] \ o

’.r’ / /

5> A

7

ek

= ? o-classes

N
i

€ — € g-classes

-+
~

Just as [1,1] measures the "thickness" of the smallest line containing
diag(A), the commutator [a,B] measures the "thickness" of the diagonal
pieces given by B8 in the algebra a. This is shown in the preceding
figure where the two squares represent two blocks of « (as subsets of
AxA 1).

Commutators were introduced into General Algebra by J.D.H. SMITH in [361].
He used them as a major tool for studying permutable varieties (whieh he
calls Mal'cev varieties). His fundamental concept is "centrality". Here
two congruences centralize each other if their commutator is 0. Starting
with this concept he develops commutators. We believe that his approach

is less direct and harder to work with than the approach we suggest.

J. HAGEMANN and C. HERRMANN [24] managed to carry the whole concept over
to modular varieties. They analyized the lattice theoretical properties of
Con(a) that made SMITH's concept work and gave a new definition of the
commutator in modular varieties which coincided with SMITH's concept in
the permutable case. Although many results true in permutable varieties
could be proved again in modular varieties and an impressing list of new
results could be added, the simplicity and clarity of the concept is lost
and consequently their methods are unusually difficult to comprehed and to
work with.

In our approach, the vehicle for transferring the concept from permutable

to modular varieties is, of course, geometry.
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Let us first see what this notion amounts to in some familiar varieties as
in groups, rings (not necessarily associative), and lattices.

To facilitate the computations, we will freely use a result which we are
going to prove later, namely that [a,8] < y if and only if [¥a,$ﬂ] = 0,
where ¢ is the canonical homomorphism from A onto Al/y, see 6.17 be-
low.

6.1 Groups: Via the obvious translation between congruences and normal
subgroups given by

1

X 0y <=> x-y ~ e N(@) and

x e N <=> x a(N) 1

we claim that the above definition captures precisely the notion of commu-
tator (normal) subgroup of two normal subgroups.

Thus let N and M be normal in G. Take xeN, yeM. Then

(y,1) ¢ 0(M) =: B8 hence (y,y) 52 (1,1) with o := 9(N). Multiplication
by {x,1) and (1,x) {(from o) -gives

(X, 1) (y,3)-(1,%) a8 (x,1)-(1,1)-(1,x) ie. (x-y,y-%) 8% (x,x). The
fact that (x,x-y) €« 8 and consequently (x,x) As (x-y,x-y) together
with transitivity give us (x-.y,x-y) AS (x-y,y*x), showing that

Xy [a,B] y.x. Therefore the above commutator contains the usual group
theoretic commutator.

Equality is seen using 6.17. We factor our given group G by the group
theoretic commutator [N,M]. (y = o{N,M1 in 6.17). Hence we may assume
that N centralizes M, i.e. every xeN commubtes with every yeM.

It follows that NS := {(x,x)] xeM} is a normal subgroup of a. Hence

defining a congruence relation ai o & by

(a,b) 6f (c,@) :<=> (a-e”lp-a7h)

<=> a.¢"t = p.a”

B & HB T

yields Gg = A
Hence (a,a) A 1)
Thus [a,8] =

(a,b) =» (a,a) ei (a,b) =» (1,800
finishing the claim.

B
o
: € NS => a=b.
o}

6n2: « Ringse  For ideals) . L,J. we pet, £5,3] 5 01:3 % JoT)i »i.8. the
ideal generated by all sums i-j + j-i with ieI and jed.

The proof is analogous to the preceding one,

Firstly for 1eI and jeJ we get with o = o(I) and g = o(J) that
CI 5 Ai (o,0), hence (j,j)-(i,o) AS (o,0)-(i,0) whence

(3,00 Ai (0,0). This proves J.I ¢ [I,J]. Similarly I.J ¢ [I,JI,
therefore (I.J + J.I) ¢ [I,J].

For the reserve inclusion 6.17 again permits us to assume that
(I.J + J-I) = 0. Therefore Ni := {(x,x)]| xed} is an ideal of (the

e R R L P L -
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ring) «. As above we define

(a,b) 02 (c,d) :<=> f{a-c,b-d)} « Ni

and find of = aB
s3 &

implying [I,J1 = 0, proving the claim.

6.3 Lattices: If «a and 8 are congruences on a lattice L then
[a,B]l = aAB.

(This is more generally true for every congruence distributive variety).

Namely consider (x,y) e aAB and look at AE, Ty and m,, all thought

of as congruences on oa. Then
B (y,.¥) 75 (x:9) @nd
a % 2 2

(xs3) A§Vn1 (x,¥) hence

ey Agv(ﬂlAﬂz) (x,¥)

by distributively and consequently X [a,B] y (since myam, = 0).
On the other hand [a,B] < aaB follows from the definition of the commu-

tator.

Thus we have seen that adding operations to our algebras increases the
commutator until it is maximal when the algebras become congruence distri-
butive. Congruence distributive varieties are in fact characterized
amongst other modular varieties by this property as a corollary to 6.12
below.

Let us now return to develop the general theory of commutators.

6.4 Properties of Agi a a b
(i) (a,b) Ai (¢,d) implies B 8
G o d

(i1)  (a,b) 4¥ (c,a) implies (b,a) a8 (a,e)

(iii) a B b implies (a,2) 48 {B.bYa

Proof: (iii) being part of the definition, (ii) follows immediately from
the symmetry of a«, OT fancier, note that (x,y) = (y,x) yields an
automorphism of «, leaving invariant the generating set of AS. For (i)
note that Az < B xBlu where B % Bla is the congruence on o given by
(x,y) B xslu (z,n) if x g o &#1d y B u.




GEOMETRICAL METHODS IN CONGRUENCE MODULAR ALGEBRAS 39

6.5 Properties of [a,B]:

(1) ra,i = dte, | taimy ik ooy
(483 GogBl = (7)) §2 i {z,x) A: (z,y))}
= {(x,9)] 3z ((x,2) 2% (3,200}
= (¥ 3z ((2,2) 28 (x,y1)).
(iii) [e,8] is a congruence relation on A.
Giv)  bof] = 048

Proof: (i) follows from 6.4 (ii).
(ii) follows with the Shifting Lemma applied to

(x,x) (z:x)
AY
|
B
/ a
4
(x,y) . (z,y)

The last equality follows from 6.4 (i) and (iii). (iv) is immediate from
the definition and from 6.4 (i). For (iii): All properties of a congruence
relation are immediate with 6.4. For transitivity we use 6.5, namely

X La,Bl y [e,B] 2 implies (x,y) A: (y,y) Ag (z,y) hence x [a,B] 2z

with 6.5,

From MAL'CEV's description of congruences generated by a binary (symmetric)
relation (0.1) we readily obtain, using 6.5:

6.6 An alternative description of the commutator:

(x,y) € [a,B] <=> there exist unary algebraic functions
Tga-++sT, ON @ . and (so,uo),...,(sn,un) e B
with

F z with ro(so,so)

(z,2) [Lor: 1,(s ,s,) = (x,x)]
T3(050U3) = T5,4085,998549)s O € d <

(x,¥).

"

Tn(un’un)

This description may of course be formulated coordinatewise. A unary alge-
braic function 1; on o is nothing else than a pair

(ti(x,gl},ti(x,gl)), where the t; are term functions on A and
i - (al,...,a%), 8t = (bi,...,b;) are vectors componentwise congruent

modulo «a.

Note that the first line says no nore than

Lol A
to(so,a s to(s
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In particular it follows:
vl vl
t,(u,,a ) [a,8] £ (u,,b Yo

This comes from 6.6 for n -Q. Since n may be arbitrary, this process
can be iterated, defining [e,8] again as in 6.8 below. The case where
we don't get started is

6.7 A syntactical description of [a,pl = O:

[a,8] = 0 <=> for all term functions p(xi,..-,xn) on A
and (az,bz),...,(an,bn) e a wand - (x.y) e 8
we have
p(x,a2,...,an)
implies
p(y:aes--':an) p{ysb2s---sbn)‘

p(xsbzs---,bn)

1t

The condition on the right hand side is called the "term condition" by
several authors. Thelabove result was independently found by R. McKENZIE
who proposes to use it to define the commutator in nonmodular varieties
(see 6.8 below). The first place where & similar condition is studied in
the connection with congruences on direct products seems to De in WERNER
[L01, theorem 9. His assumptions nevertheless are far too strong and treat
only the special case of simple algebras.

The condition alsoc comes up in a totally different (so it seems) setting.
We refer the reader to the interesting paper DY FREESE, LAMPE and TAYLOR
[12]. W. TAYLOR in [381 also showed that semigroups satisfying the above
condition for o = B = 1 are medial (which is only 2 minor part of [38]
and not hard to show) .

As we have indicated before, 6.7 actually can be turned into a definition

of the commutator as

6.8 Theorem: [a,B8] is the smallest congruence relation on A such that
for all term functions ¢, (x,y) ¢ B (aa,bg),...,(an,bn) e o we have

t{x,az,...,an) [a,8] t(x,bz,..-,bn)
implies
t(y,a2,'-'san) [“,B] t(y,bz,..-,bn),

There is also a more geometric way to see 6.7. For this recall that by

0.1 a set ScA is a congruence class for some congruence @ on A, iff
for all unary algebraic functions t© of A, we nave: If one element of

S is mapped back into S by =t then this is true for every element of

S. Thus the right hand side of 6.7 states precisely that the sets

Gi = {(y,y)| x 8 ¥y} are classes of some congruence on the algebra o. If




—
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so, they are certainly classes of A:, hence [a,B]l = O.

On the other hand, if it was not a class of some congruence, we could
assume (x,x) Ai (u,v) for some u # v, yielding (u,u) AE (u,v) with
6.5 and hence (u,v) € [a,B]l. This was our original proof of 6.7 in [191].

Notice that replacing equality signs in 6.7 by = (mod [a,B]) is another
way to 6.8. The left hand side then becomes a tautology, making the right
hand side universally true. The justification for this will be given in
6.17 below.

Another conclusion is immediate from 6.6:

6.9 Proposition: Let ¢: A > B be a homomorphism and o,8 congruences
on A. Then $[u,8] < [$a,$63.

Proof: Consider the homomorphism ¢ xé: o > $a and apply it to the equa-
tions of 6.6. Each Ty which is an algebraic function of (the algebra)

a will be transformed by ¢ x¢ dinto an algebra function ?i of (the
algebra) $u. Thus we get

T le(s )50(s,)) = (9(x),4(x))
TileCugd,efuy)) = 75,5 (e(s;,4),0(55,,)), for 0 =<i<n

(9(x),¢(y)).

Tlelu) e (u))
Hence with 6.6 we have (#(x),4(y)) e [ga,s8].
Well known for groups, we get the following corollary:

6.10 Corollary: The commutator of fully invariant congruences is again
fully invariant.

As we go on we need the following technical result:

6.11 Theorem: Let D be a subalgebra AxA (with Con(D) modular).

Let Kis ieI be a family of congruence relations on D with the pro-
perty (x,y) k; (z,u) => (x,x) k; (2,2). Then for all x,y,z ¢ D we

have:

(x,x) V k; (y.2) = (5,3 )J; (kg 8 7q) (752D
le

w2

. 3K

Proof: If {x3x) \/;j (y,2z) then there exist w.l.o.g. «x
and (uo,vo),...,(un,vn) € D with

ol i n-1

(uy5v,) = (x,x), (u,,vy) = (y,z) and

(ui,vi) <y (ui+1,vi+1) Bar: 0 d-serm,
By induction we show that

(u;,u5) \/(gj womy By st s
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Indeed this is trivial for 1i=0. In passing from i to i+1 we note
that (ui,ui) g5 (ui+1,ui+1) and, using the induction hypothesis we have
the situation:

(85415%547)

(ui,uiaq L&
/i

[}

I
VKJJHH)I‘
1

\
\

(ui’vi)\

Thus the induction step is achieved with the Shifting Lemma. Setting now
i=zn the theorem is proved.

As a corollary we have one of the most important properties of the commu-=
tator, namely join-distributivity. This was discovered by HAGEMANN and
HERRMANN [24].

6.12 Corollary: [a,\/hi] = \/Ea,Bil.

Proof: = is clear since By < \/si.

AV B.
Trivially &, i \/Acl. Hence supposing (X,¥y) € [u,\/Bi], i.e.

8-
(%,%) \/Aul (x,y) we conclude with 6.11 the relation

B8
(%) \/(Aaln nl) (x,y) which clearly means (x,y) « \/[a,Bi].

A second application of 6.11 yields a result of R. FREESE and R. McKENZIE
[13]:

e an onto homomorphism and «,8 con-

6.13 Theorem: Let ¢: A —»B D
] = [$u,$s] v ker ¢.

gruences on B. Then 3[&,5

Proof: Using 6.9 we get that (%) [$a,9p] implies

(6(x),9(¥)) « [3$a,3%8] = [a,8] because ¢ 1is onto. For the reverse in-
clusion suppose (a,b) e $lo,B8]1 i.e. (x,¥) e [a,B] with x = ¢(a) and
y = ¢(b). The last relation can be written down as in 6.6. Since ¢ is
onto there exist (Ei,Ei) e 98 with (Ei) = sy and (fi) = &y and
there are similarly algebraic functions ?i on $a which arise from the
given 1, by replacing any constant (i.e. an element of a) by an arbi-

trary preimage under ¢ % ¢ (i.e. an element of Eu). Since ¢x¢ 1is a

homomorphism we obtain:
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5. ) ker ¢ x¢ (a,a)

TD(SD, o
?i(fi,Ei) ker ¢ x ¢ ?i+1(gi+1’gi+1) for © =i <mn
;n(gn’En) ker ¢ x¢ (a,b)
1—8 -~
Hence (&,a) Af v ker ¢ x¢ (a,b). Application of 2.6 with o a%8

oa
and Ky = ker ¢ x¢ yields

-
(aya) (Ais amy) v (ker ¢ x¢ A =4} (a,b)
$a

which immediately gives the missing inclusion.

Another important property of the commutator is commutativity, see [24].
To prove it we use the Cube Lemma to imitate SMITH's proof of the permut-
able case.

6.14 Theorem: [a,B] = [B,al.

Proof: Let us define EE ve LG, ), G ). e G, ul) A: (y,v)}. Clearly
(x,y) € Ea,g] dimplies {3,%) KE (x,y), ,hence we are done if we can show
that 3P = A%
Obviously KS is a binary relation on 8 containing ((x,x),{(y,¥))
whenever (x,y) ¢ a. Reflexivity and symmetry are precisely properties
6.4 (d4ii) and 6.4 (ii).

For transitivity suppose (x,u) Eg (y,v) ES (z,w) which with the aid of
6.4 provides the following relations for ng:

(u,w) (w,w)
rd
Ve

P

(xX;z) - Z52)
» ™ ’
2
L

(u,v (w,v)

(x,y) (z,y)

The Cube Lemma thus yields (x,z) 52 (u,w)
tibility of 7°
B, containing ((x,x),(y,y)) whenever x a a. Therefore K: > A%

g
conclude A% = A% 2 Ks > A; which results in A; = EE.

B 8

SERE St K: (z,w). Compa-
is trivially seen, hence Es is a congruence relation on

We

6.15 Theorem ([24]1): Let o, 8 and y be congruences on B. Then
[¢,8] £ vy £ eaB if and only if there exists an algebra A, a homomor-

phism ¢: A —>» B and congruences ¢ and 1 on A such that
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A
o4
i

(1) g AT
(2) oV vy 2 $a and
(3) t v §y 2 98.

proof: "s": [o vy, T v eyl & Lo,T] v 3y < ¥y applying .12, 6.14 and
6.5. Hence E$u 38] < EY- From 6.13 we get ?[u,ﬂ] = [Ea,?ﬁ] v ker ¢ < Ey
and after applying $ the result follows.

For the other direction take A := @ and ¢ = T4t A+ 3B as given by
nl(x,y) .= x. Define o := ker my and T = AB. Then (x,y) oAT (u,v)
implies y=v and hence X [a,8] u, hence (lon,y) v )) « $la,B] < Y.

(x,¥) $a (u,v) dimplies {(x,u) € a« hence (x,v) € «. Thus

(x,y) $0 (x,v) o (u,v) hence $a < Jovo < dyvo. (%¥) $8 (u,v) im-
plies x B u hence (X3y) $0 (x,%) AS (u,u) $0 (u,v) so

EB < 30 v AS < Ey VT

Inspection of the above proof leads to the following corollary which could
also be used to define the commutator in nonmodular varieties. This
corollary is due to HERMANN (unpublished).

.16 Corollary: The commutator operation is the biggest binary operation
<,> on the congruence lattices of algebras in a modular variety satis-

fying:

1 <a,B8> S aAB

2. <a,Bvy> = <a,B> V <a,Y>

3. <avB,y> = <@,y> ¥V <B,Y?

Ip $<a,8> < <bo, 88> V %0 .

Proof: Use 6.15 with vy := [e,B] and construct A, ¢, O and 1. Then

repeat the proof of n*n  with y = [a,p]l and elsewhere [,] replaced
by &30

6.17 Corollary: For congruences o, B, Y of the algebra A we have
that [«,B] <y if and only if [Eu,$B] = 0 where ¢ is the canonical

homomorphism from A onto Alv.

Proof: [$a,$&] = 0 implies with 6.9 that 3la,p]l = O which is equiva-
lent to ([a,B] s ker ¢ = v- On the other hand

$r3a,981 = £53e, 5381 v xer ¢ = [a v ker 4,8 v ker ¢1 v ker ¢ <

< [a,B) v ker ¢. Assuming [a,B) s ¥ ~ ker ¢ we get that [$u,$51 = 0s

SMITH [36] says that ny centralizes 8" if gl 0.5 6217 shows that
it is enough to know the relation of centralizing to describe the commuta-
tor operation. Moreover the results obtained so far allow the notion of
the "centralizer" of a congruence o, which is defined to be the largest

congruence z{a) which centralizes «. The existence is guaranteed DY




GEOMETRICAL METHODS IN CONGRUENCE MODULAR ALGEBRAS 45

6.12 and
gle) = {8| La,pl = O}.

t := (1) is called the center of A.

Recently the importance of the centralizer concept became clear through a
beautiful theorem by HRUSHOVSKII, which generalized the important Jonsson
Lemma [28] and its subsequent generalizations due to HAGEMANN, HERRMANN
[24] and FREESE, McKENZIE [13].

6.18 Theorem (HRUSHOVSKII): Let S ¢ HSP(K) be subdirectly irreducible
with monolith w. Then S8/ . ., « HSP, (K).

Here Pu(K) is the class of all ultraproducts of members of X . Note
that in congruence-distributive varieties ¢(u) =0 s0 S ¢ HSPu(R) as
stated in Jonsson's Lemma. See [1] for the definition and the important
properties of ultraproducts. We prove the theorem here in a slightly more
general form. Recall that an algebra S 1is called finitely subdirectly
irreducible if the, smallest congruence 0S is not an intersection of

e

finitely many congruences above OS'
6.19 Theorem: Let 8§ ¢ HSP(K) be finitely subdirectly irreducible and
define & := V{z(a)| « #0}. Then 8/, ¢ HSP (K).

Note that in 6.18 ¢ coincides with «¢(u), so 6.19 implies 6.18. The

proof is very similar to Jonsson's proof in [28] and it is based on W.

LAMPE's proof of HRUSHOVSKII's theorem.

Since 8 ¢ HSP(K) there is a subalgebra U of a product i A. wWith
s = st E

éi e K and a surjective homomorphism ¢: U —=» 3. Let © be the kernel

of ¢ in Con(U). © is finitely meet-irreducible. First we show:

(§) Suppose o,B ¢ Con(U) with «aAB <@ and o« 20 and B £ ©

Then there exists a y £ 0 with [avg,vy]l = 0.

Take vy := (av0) A (Bve), then vy 1is properly above © since © is
finitely meet-irreducible. Now

[a,y] < [a,B8v0] = [a,B] v [a,68] < (arB)VvE < 0 and similarly I[B8,y] = @
so [(avB,y] = 0.

For subsets D of I define a congruence relation np on U by

X np ¥ iff 4| xa) = y@)r =2 b.

Let ¥ be a filter on I, maximal with respect to the condition that
np £ © for all De F. Let X be any ultrafilter extending F . We
claim:

¥ H £ ‘T‘(E)
Ee ‘U{ E :
£ 0 < ¢(E). T E £ ; then by

n s
E
the meximality of ¥ there exists a Ge ¥ with £ 0 and

If Ee ¥ then this is clear since

"EnG
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. 5. Now with (§) we find a
< ¢(y:0) (where z(y:0)
is below 8).

So the uwltrafilter

e £ 0. But obviously ng.g * ME'nG = ng

n

EI
Y properly above © with ng < Ngag v Nz
denotes the groatest congruence whose commutator with v
since finally t(y:@) = $(g) we have that ng < $ee).

congruence T given by \/{nE| Ee U is below $(g). With standard

arguments (see [281) now S/ € HSPu(K).

Let us introduce grime and semiprime congruences.

prelation © on the algebra A is
on A we have: [a,B] = ©

if the above implication

§.20 Definition: A congruence

called Erime if for any two congruences a,B

implies « <@ ©OF gis0. O 4s called semiprime,
nolds in the special cases where « = 8.
rreducible moreover they are

Clearly prime congruences are rinitely meet 1
£: Con{A) + Con(A):

precisely the fixed points of the following mapping
o + E{8) == \/{ul 3 [a,B8] < O}
: 3;@
Note that for (nonassociative) rings R and ideals I,J,K the above
lent to the usual notion using products of

notion of primeness is equiva
jdeals of R we have:

K is prime iff for all T.d

jdeals, i-.e.
This is not hard to show.

1-J < K implies 1<K or JskK.

ces 1is semiprime. The converse is due

The intersection of prime congruen
to KEIMEL [44]: Every semiprime congruence is the intersection of prime

congruences. 1t is useful o introduce the notation /o for the inter-

section of all prime congruences apove ©. Then KEIMEL's theorem says

We write VA for Jﬁ; and call VE

that o 1is semiprime iff Ja = @

the prime radical of A. From 6.19 we obtain

Let A Dbe an algebra i Then

n a modular variety HSP(iD) -

.21 Theorem:
5/./::{ € PSHSPu(K) 5




7. TERNARY TERMS FOR MODULARITY

In the last chapter we have not fully made use of the fact that we are in
a modular variety. We could have done with the hypothesis that congruences
on A, when considered as subalgebras of A xA have modular congruence
lattices.

In this chapter we will use the ternary term t(x,y,z) as constructed in
theorem 4.3 to obtain an impertant permutability formula for congruences.
This in turn will be the key for the construction of ternary terms which
may replace the quaternary DAY-terms.

The discovery of those terms was surprising for various reasons. Firstly,
since ternary terms are describing properties of three generated algebras,
the existence of ternary terms seems to contradict the fact that there
exist varieties, all of whose three-generated algebras are modular, but
the variety as a whole is not congruence ‘modular. The solution however is,
that our terms are in fact describing a property which is strictly
stronger than modularity and which is shared automatically by every alge-
bra which is contained in a modular variety.

Secondly, the terms we produce are just B. JONSSON's terms for distributi-
vity (thm. 1.4) and A.I. MAL'CEV's term for permutability (thm. 1.2)
"glued" together. Thus giving account of the fact that modular varieties
are somewhere in between (and including) permutable varieties on the one
hand and distributive varieties on the other hand.

This general principle will come up time and again in the later chapters.
Investigation of the commutators will usually indicate in which direction
to go.

Let us now start with investigating the r8le of the ternary term t(x,y,z)
from 4.3 within commutator theory.

To this end let o and g be congruences on A with «28. Suppose
X,¥,2 are elements from A with xa y B z. We set ¥ := A: and apply
the term t +to the situation (inside the algebra a): '

(x,y) (z,y) (y,y)

(x,2) (z,2) (y,z)

b7
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Using 4.3 we find
($) (x,¥) Ag (t(x,¥,2),2).
In particular, setting x =y, we obtain:
t(x,%x,2) [a,Bl 2.
The interesting case is where o =8:
7.1 Lemma: There is a term t in every modular variety V such that

t(x,y,y) = x is an equation in ¥V

and t(a,a,b) [a,a] b holds for a a b.

An important application, which has also been found independently by W.
TAYLOR is:

7.2 Lemma: For any congruences o and B8 the formulas

Ge¥ c [0,0]0¥aD

in

and ©o¥ c ¥o0o[¥,¥]
are true.

Proof: For (x,z) ¢ @eV¥ there exists a ¥y with x & y ¥ z. Then
x [0,0] t(y,y,%) ¥ t(z,y,x) 0 t(z,y,y) = 2z and
x = t(x,y,y) ¥ t(x,y,2) 0 t(y,y,z) [¥,¥1 z by Tl

Qur plan is now, to use 7.2 for obtaining a new Mal'cev-type condition for
congruence modularity. To this end, the commutator has to be removed from
the formulas in 7.2, since we have not defined it for nonmodular varieties.
We find the desired version of 7.2 in the following lemma:

7.3 Lemma: For congruences o, 8, Y and 6 with o < yvé we have
aeB g ((aay) v (aag))eBea.

Proof: a8

In

[u,u] s B o a C

in

Ea,v ¥&l » B 9 o c
(La,y) v [a,8]) ¢ 8 = & <
((aay) v (and)) o B o «.

in in

Finally then the characterization theorem [20]:

7.4 Theorem: For a variety V the following are equivalent:

(i) V is congruence modular.
(13 For all congruences o, B, v, § on Ae V with yvé 2o the for-
mula aoBf c ((aay) v (and)) o« B oa holds.

(iii) For all congruences a, 8, y On AeV with yvg 2« the formula
aoBc ((aap) v (aay)) o B o a holds.
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{(iv) For some nell there exist ternary terms Qus---24y and p such
that the following equations are true in V:

X

n

(1) qo(xsysz)

(2) qi(x,y,x) = xe=forsalids OB< 3 <

(3) a;(x,%,¥) = q;,4(x,x,y) for i even

(4) @ (x,5,¥) = a5,,(x,y,5) for i odd e

(5) q,(x,y,y)
p(x,y,¥)

MAL'CEV-term
(6) plx,x,y) = ¥y

Comment: It may be interesting to notice that p could be trivial (i.e.
a projection). In this case p would be the third projection and
qn(x,y,y) would be egual to y. We may suppose that n is odd, for
otherwise we have qn_i(x,y,y) =y &as well. Now define qn+1(x,y,z) = i

Now the equaticns we are left with are precisely B. JONSSON's equations
showing that V is'congruence distributive, (1.4).

On the other hand, if all the q;'s are projections, this would imply
qi(x,y,z) = x for every i. Hence what we are left with are the equa-
tions which are precisely those of MAL'CEV witnessing permutability (1.2).

Proof of T.4: (i) = (ii) » (iii) is lemma 7.3.

For (iii) » (iv) 1let EV(S) be the free algebra in V generated by

X = {x,y,z}. Consider the congruences e(x,y)’ e(y,z) and B(x,z) which
are generated by the nontrivial partitions of X.

Clearly o(y,z) v e(x,z} > a(x,y)‘ Hence (iii) tells us:

Bt Sty.en § H80siun? Searp N Bangy 800y 0y 1 2 Olgaye® Yy
(x,2) 1is therefore in the right hand side, which implies that there exist

elements t_,...,t,, and r in EV(S) such that

(0) X = tO

- .
(2%) ti e(x’y) A e(x,z) ti+1 for 1 even

(3r) & Ox,y) » O¢y,z) ti4qr Tor 1 odd
4) t. O(y,z} r and

(5) r e(x,y) i

We rewrite (2') and (3') by

(1) b5 O,y) ¥ for all i

(2) by B ) ti,q for 1 even

{(3) 1 @(y,z) t541 for 1 odd.




50 H. PETER GUMM

By the usual arguments then the ti and r do correspond to ternary
terms Ei and p sueh that (in accordance with (O0Ya0 ~nnn L0 )sethe

following equations are satisfied in V:

(0) x = q,(x,5,2)

(1) Ei(x,x,y) =% for all 0 < i <n
(2) q; (x,5,%) = Ty ,4(xs¥,x) for 1 even
(3) ai(x:ysy) = ai+1(x,y,y) for i odd

(%) q,(x,¥,¥) = p(x,¥,¥)

(5) p(X,X,¥) = ¥-

By simply redefining qi(x,y,z) 1= Ei(x,z,y) we get the desired terms.

For (iv) » (i) it is enough to prove the Shifting Lemma according to 3.6.
So we start with congruences «, B, y with oA B8 <y and elements

Xy ¥, 25 u such thet' x o z (BAY) u o y B x. Again we might as well
assume that aA B = 0, otherwise we would have to replace equality signs
by = (mod aAB).

Consider the following points of A:

D = plz:n,¥)

q; := q3(%,u,¥)

Ei = qi(x,z,y) and
g, = qylz,y,u)-

We obtain the following relations:

T X B Ei for: all i

405 %R ai for all i, by using equation 2.
Equation 6 yields:

III y (Bay) DP.

Thus the Ei, g; and $ 1lie on the g-line connecting x and ¥, in
particular they are mutually g-congruent. Equations 3 and I now provide

for

Iv q; @ Q449 for i even and
~ A~ Y

v 4; o G344 for 1i. odd.

Hence with I and II we have

VI a5 = Q341 for 1 even and

VII o for i odd.

5 = By
But notice that by definition we have also

VIII q; v §; for every 1
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This, together with VI and VII gives us:
X =g 61 . ﬁi = §2 Y 52 = 53 Y &s Sas an’ Jisen

X X v Qn. (No matter whether n is cdd or even!)

e

Hence in view of III, all we have to do is to show that 9y 7 p. For this
reason notice that

-

4, = ay(x,u,5) = q (z,y,u) = § and

n n

B = p(z,u,¥) a p(z,¥,¥) = q (2,y,y) @ g (z,y,u) = § .

Hence § e p and 4, 8 p by I and III. Thus 4, =P and we are
finished.

To see what is really going on, a look at the following picture is worth-
wile. (Notice, that an Yy A B u by eguation 2.)

x = an= q

=4
ey
1
Y
]
-

WO
r
n
[fa]
w
™
-

Of course, as a consequence of 7.4 one should be able to construct our
terms Ags--+20p and p from the DAY-terms Mys ey In fact a con-
structive proof could be worked out following the ribbon backwards through
the theory of commutators and through the construction of the sixary term
from chapter 4 to the DAY-terms. This would be an enormous and tedious
task, so messy that it is inconceivable that a proof of 7.4 would ever
have been found without the theory of commutators at disposal.

For the simplest nontrivial case, i.e. if V is 3-permutable we have

worked out the terms:

7.5 Propositicn: Suppose V is a 3-permutable variety, where r(x,y,z)
and s(x,y,z) are the terms for 3-permutability (1.3) i.e. satisfying

x = Pl vLv)
r{x,x,y) = s(x,y,y)
S(X gy sy

Then the following are terms satisfying the equations of 7.4:
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q,(x,y,2) = s(r{s(x,2,2),y,x),r(x,y,2),x)

a,(x,¥,2) = r{r(s(x,2,2),2,x),r(s(x,2,2),y,%x),r(x,y,3))
a5(x,y,2) = r(s(x,z,2),2,x%)

plx,¥,2) = 2(B(X,¥,2):¥,%).

We can do better, namely have 7.4 hold with n =2 because of 3-permuta-
bility. But the terms will get deeper nested as

q(x,¥,2) = v(x,q9(x,¥,2),9,(%,¥,2))

EE(XJ,Z) chl{x:ysz)QQ2(xsysZ)qu{x,Y:Z))

p(x,¥,2) = r{s(x,¥y,2},y,x}.

Is there any shorter way?

Very beautifully the terms of 7.4 come up when we form the join of two
independent varieties El and !2 where El is distributive and 22 is
permutable. Independence of Xl and 12 means that there is a binary

term f(x,y) such that

FEx,¥)
f(x,y)

1]

x holds in 21 and

¥y holds in XE‘
Clearly modularity is the common denominator of ¥V, and V, and should
hence be shared by their join. (Here independence is indispensable as a
consequence of [15].)

Let t e be the JONSSON-terms of Xi and m the MAL'CEV-term of

oS n
12 then
qi(x,y,z) = f(ti(x,y,z),x) and
p(x,y,2) := £(z,m(x,y,2))

are the terms for theorem T7.4.

There is, also an interesting converse to this construction. Namely, given
the terms a3 and p of Theorem 7.4, define subvarieties of the given
variety V by

:= Mod {p(x,y,¥y) v} n

|=< E::
1<

x} n

Mod {p(x,y,y)

1<t

P

Then we obtain:

7.6 Proposition: V. is congruence distributive, Ep is permutable and
Ed and Ep are independent subvarieties of V.

! If V as an example is the variety of generalized right complemented

semigroups then r(x,y,z) := x-(y*z) and s(x,y,2z) := z-(y*x) show that

V is three-permutable. Thus the term p(x,y,2z) from theorem 7.4 is
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r(s{x,¥,2),¥,x) =
(z-(y*x))-(y*x).

"

plx,y,2)

Thus V4 = Mod {(y-{y*x))-(y*x) = y} n ¥V and
v

= Mod {{y-(y=*x)).(y*x)

"

x} W
p "=

Let us add a remark about the connections between the different terms we
have been using so far. It will become obvious in the following chapter
(see thm. 8.5 below) that, on defining

t(x,y,z) 5= p(z,y,x)

we obtain a term satisfying all properties from our originally constructed
ternary term from chapter 4. On the other hand, for every term Elx,v,2)
with the properties described in theorem 4.3,

p(%,¥,2) := t(z,y,x)

yields a term for which there exist Qgse--29y, with the properties of
theorem 7.4. This is a conseguence of the proof of 7.2.




8. PERMUTABILITY RESULTS

In this chapter we give criteria for congruences © and ¥ to permute.
Some of the results improve corresponding findings from chapter 4. The
formula on which most of this is based is the one from T2

We start with

8.1 Theorem: Let A Dbe an algebra in a modular wvariety and © and V¥
congruences on A. Then the following statements are egquivalent:

(i) @ permutes with ¥
(m)

(i) B(n) permutes with ¥ for all n,m e N

m)

(iii) e(n) permutes with w( for some n,m e M.

Here we use the folléwing definition:

3

o0 .z p, oM iz pel™ 0tM.
o 1is called solvable, if @(n) = 0 for some natural number n.
Note that as a corollary to 8.1 we have a result from [21]:

8.2 Corollary: A solvable congruence relation permutes with every con-
gruence relation.

Proof of 8.1: Iterating the formula ©°V £ [e,0] %0 and its symme-
tpic form we obtain:

eows\vna(n)ow(m)oe for any n,m e N,

Namely, by symmetry we are done if we show the induction step from n ©o
n+l. Assuming the above formula we obtain

Gov c ¥ s ol o y(m g ¢
yorol™,efmy.y(™ . o™ .0

n
n

o o(nt1) (@) o,

< Y
v v e . s (n) (m) _
Now the above formula gives us (iii) »+ (i) since @ <o and ¥ ¥.
It remains to prove (1) » (ii).
Again by induction we may assume we have already proven that G(n-l) per-
mutes with w(m hence have to show e(n) permutes with ?(m}. Changing

notation, we have to show that [0,0] permutes with ¥ in case © per-
mutes with ¥. Suppose (x,2) ¢ [0,0] ¥, i.e. for some y we have

x [0,0] ¥y ¥ =.

54
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In particular (x,y) ¢ 8 hence x € y ¥ 2. Since 0 and Y permute we
find a u with

Yy ¥ z
rd
’
1
EG,G]‘ e 5]
\
X u

The Shifting Lemma gives us (u,z) ¢ (eav) v [0,0]. But since
Fea¥, o4l £ [9,81, (aan)’l) permutes with [5,0] which implies tHat
©AY permutes with [©,0]1 by the direction (iii) » (i).

Hence there exists an element w with u e A ¥ w [8,0] z, thus
Xx ¥ w [0,0] 2z which was to be shown.

As a corollary to the proof we get a stronger kind of Shifting Lemma,
namely:

.

8.3 Corollary: Let a, B, y be congruences on an algebra A in a modu-

lar variety such that (ao AB)(n) permutes with y(m) for some n,m e N.
Then
a =
o
|
] o
/
b d

implies (a,b) ¢ (aaAB)oey.

Iterating the formula of 7.2 in a way similarly as in the proof of 8.1 we
find that joins of congruences may be easily computed, once the join of
some of there iterated commutators are known:

8.4 Lemma: If @ and ¥ are congruences and n,m ¢ N, then

ovy = 0o (oM yy(my oy .

= (el yymy 60y

=0 o ¥ o (G(H)V'P(m)).
An application will be given in 8.8 below.
Theorem 4.3 may also be improved as follows:

8.5 Theorem: In every modular variety V there exists a ternary term
p{x,y,z) such that p(x,x,y) = y is an equation of V and for con-

gruences o, B and y with oA B permuting with y we obtain
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% o Z X A
e
P
8 [
s
ol
y u u' P Y u u'

with 6 = yo(aag) and p = plu,u’,y).

Proof: Define ﬁi and p precisely as in the proof of T.4. Hence
xy Vv (aaB) qn and finally p(u,u',y) v plz,u',y)

plu,u',y) v p(z,u',y) (aag) g, with p(u,u',y) o« y yielding

x vy e (aAB) D.

With the help of the above finally 4.4 can be strengthened:

8.6 Corollary: Let o, B and y be congruences such that
Yy <aeB = Boa and Y(n) permutes with (o A'B)(m) for some n,m ¢ N.
Then vy permutes with o (and with B8).

Remark: The special case where aAB s y was the first result in this
direction. It was proven in [17]. Combining this with the result that
solvable congruences permute with every other congruence (8.2), A. WOLF
gave a short argument to replace the condition oA B < ¥y by

(aa8)™? < .

Corollary 8.5 is its present form subsumes all those versions as well as
8.2, just set f=1 and m=0.

If « and B are congruences then modularity of the lattice of con-
gruence relations implies that the maps x —> oVX and ¥ —> BAX are
isomorphisms between the intervals oAB8 s x < B and « = x £ aVB.

In [21] it was proved that

8.7 Lemma: If o« and g permute, then the above isomorphisms preserve
permutability of congruences.

Proof: For aAB < 0,¥ s B we find by 4.4 that @ and ¥ permute with
«. Hence ave (= ac@) permutes with avy (5o oY

If o < 0,¥ s avp and © permutes with ¥ then notice that by repeated
use of 4.4 oAy permutes with g » (ov ¥). Thus we might as well assume
that aaBg =0 and 0AY = a. Moreover, instead of looking at each class
of ©vyY separately, we may assume ©OVY = &

Thus © and V¥ give a factor decomposition of A/a. Since o« permutes
with B8, we have a direct decomposition of = A.
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Therefore, all the congruences considered so far were factor-congruences,
in particular, ©AR and ¥ A8 permute.

1

o

Combining the preceding lemma with 8.4 we obtain a short proof of a theo-
rem which is due to A. WOLF [421:

8.8 Theorem: If A and B are algebras in a modular variety such that
A and B have permutable congruences, then so has A xB.

Proof: For 0,Y¥ congruences on AxB we have by 8.4:

ovy 0 o k[o,e] v [y,¢]) o ¥ o

n
@
o

([0,11 v [¥,1]1) o ¥ ¢

n

0 o ([o,my vmy] v [¥,myvr,1) o ¥ ¢

n
o
°

(fo,m 1 v [o,m,] v [¥,my1 v [¥,7,]) « ¥ ¢

in
@
o

((@am) v (vamy) v (0am) v (Yam,)) oy

n

In
(o]
o
<

B=

n

(((eam) o (Yam)) v ((Bamy) o (¥amy)))

n
(o]
°

((lenz) ° (\P.»\vri) ° (BAn2) o (‘PAHE)) o ¥

tn

In

0 o (‘PA'NI) ° (Ghﬁa) o ¥ ¢

n
@
o

(an-n-z) ° (\[In';rl) °o ¥ c Doy

We have twice used the fact that every congruence below my permutes with
every congruence below Ty This follows from 4.4 because and
permute,

1!1 TI'2

Quite useful is the following instance of.Corollary B.2:

8.9 Corollary: If (Con(A) has Mz, (the five-element modular nondistri-
butive lattice) as a sublattice, then any two elements of this sublattice
permute.

Proof: Clearly if
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is a sublattice, then [a,e]l < & by successively applying the rules of
6.16. Hence a, B, Y, 6 are solvable in A/e. Thus dm fact . ms BhL s
permute with everything above e.

As an example, using arguments from PIXLEY [351, a result of R. McKENZIE
[33] can be adapted to the modular case:

8.10 Corollary: If A is finite, simple in a modular variety, then A
is either affine or A% generates a distributive variety. (Here 5* is
the algebra obtained from A by adding a constant a with value a for
every element aeA.)

Proof: Let F := —V(A*)(j) be freely three-generated in the variety
V(A*) generated by A*. Clearly F is a subdirect power of e TE
Con(F) 1is distributive, then V(g*) is congruence distributive as a con-
sequence of JONSSON's theorem (thm. 1.4). Otherwise there are coatoms

a,B in Con(F) with [r|iaiaRs x <k U ibeinglia nondistributive inter-
val; o and B may be chosen to be part of the subdirect decomposition
for F (see BURRIS [53). Since F/a ¥ F/g * A%, and, by corollary 8.9,
F/aag ¥ A* xa* for o#B8. Hence Yoy A has a congruence which is a
complement of the canonical factor congruences, since A% is simple.




9. ABELIAN CONGRUENCES AND AFFINE ALGEBRAS

In the preceding chapters we have mainly made use of the commutators of
the form [w,c]. Here we look at a case, slightly more general, namely we
assume a =8 and consider [a,8].

If X, y, z are elements with x o« y 8 2 then we have already found the
important relation

(x,5) 8% (6(x,,2),2). (§)

Therefore, since
o

s (yi""’yn)’
operation f:

Ai is a congruence we find for X := (xl,...,xn),
- 8

z. and any n-ary

= (Zl""’zn) with x. a ¥y 5

1

CRRNECT)) A7 (ECE0Ry 00580 Vamoo sE(E s ¥ b2 3) S (E)).
Using (§) again we get

(£(),£(5)) a8 (62,0, 0@, 2(2))
and hence

£CE(Xy5¥9529) 500 t0x,y,,2,)) [a,8] 6(0(X),0(F),0(2)). (§§)
This yields one direction of an equational description of [a,B]:

9.1 Theorem: Suppose o28. Then [a,B] = 0 if and only if for all

X oooyy B Z; with Xis ¥ys 25 € A the equations

t(y;.¥;.24) = 2z; and
POBER; 501 a%q Dons 5a 80 902 1) = CLE0R),L(F)L.2(2))
are satisfied.

Proof: For the proof of the missing direction we define a congruence re-
lation £ on a« by

(x,y} & /tu,2) s<=5 X a5 B 2 and tlx,y.2) & u.

To show symmetry we suppose t(x,y,z2) =u and X a ¥y B z and compute:

t(u,z,y) = t(t(x,y,2),6(¥,¥,2),t(y,y,¥))
= t(t(x,y,¥),6(y,¥,¥),t(2,2,y))
t(x,y,y) = X.

"

59
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Clearly Xx B u,; henee u a = B ¥.

For‘transitivity stuppose H a ¥y B 2, u o & B 5, G(x.,¥,2) = 1,
t{u,z,8) = r and compute:

t(x,¥,8) = t(t(x,y,¥),t(y,¥,¥),t(z,2,s))
E(E(x,5,2),6(y,¥,2),6(y,¥,8))
tluszs8) =1

"
"

Again x a y B s trivially.

Using that ¢t(x,x,y) =y for x 8 y we find (x,x) = (y,y) whenever

¥ By and conseguently E 2 Ai.

Hence suppose x [a,B] ¥, then (y,x) ﬁg (X,%)5 « therefore {y.x) = {(X,%)
hence SH(yic,x) = x which implies x=y. Thus [g,Bl = O,

We have created a situation similar to the hypothesis of Proposition 5.4.
Indeed, theorem 9.1 permits us to associate affine algebras with con-
gruences o Wwhich are abelian, i.e. for which [a,e] = 0. If additional-
ly o« 1is contained in the center, then all affine algebras associated
with « are isomorphic. Moreover, the congruences below the center ¢
correspond uniquely to the subalgebras of the affine algebra associated
with ¢. This reflects the group theoretic situation where subalgebras of
the center of G are normal in G. One of the difficulties we have here
is, that our algebras need not have any one-element subalgebras.

We have to use 9.1 over and over again. The approach is rather naturally
and intuitively clear, but we have to be careful in setting up the right
equations so that the conditions in 9.1 remain satisfied.

Choose an arbitrary element a from A and a congruence relation
8 ¢ Con(4). Let f be a fundamental operation of A, or the ternary
operation t(x,y,z). For KygeensXy € [alg we define

fv(xl,...,xn) :='t(a,f(a,...,a),f(xl,...,xn)).

Let évtsla be the algebra with base set [al8 and the operations of the
form fv. Clearly [alg is closed under the new operations so that the
definition makes sense. Note that in case [8,8] = O idempotent opera-
tions remain unchanged, in particular, if {al} bhappened to be a one-ele=
ment subalgebra of A then gv[B]a is the subalgebra [alg of A.

This is immediate from T7.1.

First we nesd:

9.2 Theorem: Let o228 with [a,8] = 0. Then 5V[s]a is an affine
algebra and for (a,b) ¢ « we get év[g]a & &V[B]h.

9.3 Corollary: If «=z8 and [a,R] = O then B is uniform with respect
t0 @, i.e. all B-classes within a fixed wo-class have the same size.
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Defining . 1= a and s BT [an,ll then by induction:

9.4 Corollary: If «” = 0 for some nelN then all classes of o have
the same size (o 1is a uniform congruence).

Proof of 9.2: a) gvts]a is affine with respect to t (= tv). We use
the notation a for the constant sequence (a,...,a). % denotes
(xl,...,xn), similarly we use y and z.

So, given X3,¥5025 € [als we compute
£(e7 (), eV ($),£7(2)) = t(6(a, (@), 0(X)),t(a,r(3),5(3)),t(a,£(2),£(3)))
= t(t(a,2,a),6(£(2),£(2),£(3)),t(£(X),F(F),F(2)))
= t{a,f(i),f(t(xl,yi,zl),...,t(xn,yn,zn)))
= fv(t(xl,yl,zl),...,t(xn,yn,zn)).
b) For a a« b we show év[ﬁla X gvts]b:
Define Ea,b: [alpg —=> [b18 by Ea’b(x) := t(b,a,x), then with 9.1 again

"

Eb,a°ga,b(X} t{a,b,t(b,a,x)) = t(tla,a,a),t{b,a,a),6(b,a,x)) =

n

titla,b,b),t(a,a,2) . tla,a,x)) = tla,a,x) = =.

Hence the Ea p are bijective for a a b.
3
Furthermore, (denoting the operations of ﬁv[s]a and of év[sjb with the
same symbol) we get for X; € [alsg:
V -—
fa,p(f (Xgseeenx))) = t(b,a,6(a,f(@),1(X)) =

= £(t({b,£(0),r(6)),t{a,f(T),F(a)),t(a,f(T),£(X)))

t(t(b,a,a),t(£(B),F(F),F(F)),t(£(D),F(T), (X))
t(b,f(E),f(t(b,a,xl),...,t(b,a,xn)))

"
1]

£F g B s E 3 0

Now from the above it is clear that in the special case where [1,e¢] = O,
i.e. a<tz (the center of A) there is one affine algebra Alu] asso-
ciated with «a.
Afe]l even is contained in the variety generated by A and the relation
between A, Afo] and (the algebra) o is given by
9.5 Theorem: If ([1,e] = O then
(i) a"[al ¥ a/,1 and

a

(i1) o ¥ axA"lal.

9.5(1i) is a generalization of the situation which has first appeared in

Sec. 5, namely for A an affine algebra, i.e. setting o =1 we get
AxA = ﬁ:tgv where now gv (by 9.5(1)) is the factor of AxA by the
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1
; on AxA (see Sec. 5). Note that gvtu]

one-element subalgebra, as (possibly) opposed To A.

congruence A = A always has a

Proof of 9.5: (i) Define a map §6.: & —» [alae

by ﬁa(x,y) = e e
then 5a is a map from « to [ale and ker 6 = Ai

t(a,x,y) = t(a,x',y"') =: u then (a,x) A
so (a,u) Ai {x.v) and (a,u) Al (x',y"' )
this section, hence (x,¥) Ai (x',y )5

because suppose
(u,y) and (a,x') Ag sy
according to the beginning of

1
i.e. kep 5a £ A
Conversely (x,y) Ai {x',y') 1leads to (x,x') Ag (y,y') and for
v := t(a,x,y) we find (a,x) 61 (v,y) hence (a,x') A (v,y') and
tla, %,y = v = lasxTyyt)s

For the homomorphism condition we calculate

8, (0551 ) 5o es (Xs¥y))) = slap{EfTH =
t(a,a,t(a,f(%),£()))

t(t(a,a,a),t(a,f(E},f(E)),t(a,fti),f(§)))
£(a, s (5),£9(F))

£ (6 (a5 q) s o582 %59,))

£V (8, (%150 ) 58, (Xp5¥))

For the proof of (ii)

we find in the congruence lattice of the algebra
the congruences Ai

a
L2 and L (the kernels of the projections onto A).

f1,e¢] = O means & T = 0 and, equivalently Ai AT, = 0. Moreover
Al v, ® Al v, = 1. Thus Ai and mw, are complements in Con(a). If

they permute they will give the desired decomposition of

b
dE
ot

a. But since
[“1’"1] - 0 follows from the above relations,

Ty permutes with every
congruence (recall 8.2).

Next we are going to look at congruences below the center ¢ and we shall
show that they correspond uniquely to subalgebras of Alzl.

Pix an element a from A. For a subalgebra S of ﬂv[c]

A containing
the element a, define ¥(8) := ((X,¥) e t| tla,x,y) e S} and for a con-
gruence relation © of A with @<t define U(e) := [ale. We show

9.6 Proposition: U(-) and ¥(-) are mutually inverse lattice isomor-
phlsms between the interval [0,z] of Con(A) and Sub(&v[;]), the
lattice of subalgebras of A tels

Remark: The point is here that subalgebras of A [cl correspond to con-
gruences on A. TFor congruences on A [c] the corresponding property is
trivial from affineness. Another way to phrase 9.6 would be:

Congruences
on gvtgl can be extended to congruences on A.

Proof: We show that ¥(S) 1s a congruence on A.
Symmetry: If x ¥(S) vy then at tfa,y.x) hence




GEOMETRICAL METHODS IN CONGRUENCE MODULAR ALGEBRAS 63

tlasysx) = Blaia tlia,v.%))
t(t(a,a,a),t(a,x,x),t(a,y,x))
t(a,t(a,x,y),a) ¢ S.

Transitivity: t(a,x,y) ¢ 8 and t(a,y,z) ¢ S, =xgyrz imply

t(t(a,a,2),6(x,y,¥),t(y,y,2))
t(t(a,x,y),a,t(a,¥,2)) « S.

tlaan )

Compatibility: Given X;Ty¥5 and t(a,xi,yi) € S then f(?):f(;) and
t(a,f(¥),0(¥)) =

= t(t(a,£(3),£(2)),6(£(X),£(X),£(X)),t(£(X),£(X),£(¥)))

t(a;f(z)sf(t(asxl;y1>;---,t(asxnsyn)))

]

fv(t(a,xl,yi),...,t(&,xn,yn)) e S.

Finally for @sg, 0 e Con(A):
¥ Uule) ¥y 4ff tla,x,¥y) ¢ U(e) & xcy iff
t(a,x,y) o t(a,x;x) = a & xzy iff xoy.

The last equivalence here is due to

x = t(x,a,a) @ t(x,a,t(a,x,y))

R ) Blayx ) b laagy))
t(x,x,¥) = y.

With the preceding results the congruences below the center and the corres-
ponding affine algebras seem to be well understood. Next abelian congruen-
ces B 1i.e. those for which [B,B8] = O should be studied for B8 ¢ €. 1In
general the corresponding affine algebras gv[aja do not lie in the
variety generated by A. In the case of groups though they do generate
equivalent varieties. A description of those affine alpgebras might lead

to improving the bounds for the cardinality of subdirectly irreducible
algebras in residually finite varieties, given by FREESE, McKENZIE [13].



10. VARIETIES OF AFFINE ALGEBRAS

Analogously to the theory of groups we define for a congruence a:
B

plEc s N I:m{n)’ﬂ(n)].

@) PT 3 a

u.(n+1) = [u,a(n)];

Then o is called nilpotent (solvable) of degree s k ali gy ° 0
(u(k) = 0). o is called nilpotent (solvable) if for some keN o 1s
nilpotent (solvable) of degree =< k. Clearly A is called nilpotent
(soclvable) if 1A sl 8

If V is a variety then with E(k) (resp. E(k)) we denote the class
of all algebras which are nilpotent (resp. solvable) of degree = k.

Starting with t(x,y,z) - from chapter 4 (which may of course be plz %)
from chapter 7) we define recursively: '

tl(x,y,z) sz % V2
toeq(Xe¥,2) := et (x,5,2),,(¥,¥,2),2).

Then we get:

10.1 Observation: K(k) and E(k) are permutable varieties with Mal'cev
term ©,.

Proof: The fact that E(k} and !(k) are varieties can be proven just
as in the case of groups. In other words, the class of algebras with a
solvable (nilpotent) series of length < k for some fixed k, is closed
under taking homomorphic images, subalgebras and direct products. It has
been clear from 8.2, that E(k) and E(k) are permutable varieties. The
fact that ¢, is a Mal'cev term on every solvable algebra (degree = k)
is easy by induction using T7.1.

Now we are going to use 9.1 to give an equational description for !(k)
and for I(k).

To this end let us define by recursion:

N
o

"

% =y}

n

levt {t(o,0,7) = T Nebo=1hu
u {f(t(xi,cl.rl),...,t(xn,un,Tn)) z
H t(f(xi,...,xn),f(ai,...,cn),f(rl,...,tn))}

|f is n-ary operation and N,k o; = 1; for O < i = i)

64
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and

Seainsi e =iy
c= Itis o t)a—a| S ko=l

u {f(t(vi,ci,tl),...,t{yn,un,rn)) =

= t(f(vl,...,Yn),f(ci,...,un),f(rl,...,Tn))i

|f n-ary operation and S kv =0y 2Ty,

9.2 yields by induction:

10.2 Corollary: Relatively to V the varieties E(k) (resp. E(k))

are defined by the equation Nk (resp. Sk).

For the case k=1 nilpotency and solvability coincide, leaving us with
the variety of affine algebras.

We have seen before that affine algebras are just modules in disguise. In-
deed E(l) is polynomially egquivalent to a variety of modules over a
ring R(V). Let us have a closer look at  R(V).

Clearly we should expect R(V) to be the free module on one generator.
However, instead of looking at Ev(i}, where we have to make up our mind
which element to pick for a o-element, we just adjoin a new free generator,
which we call o. Thus technically we look at the free V-algebra with
free generators x and o. (This idea goes back at least to CSAKANY [T7].)
Then we do the construction of § 5, i.e., R(Y) has an underlying set the
set of all binary idempotent terms r(o,x). Addition and multiplication
are given by

r{o,x) + s(o,x) tlr o), 68006))
rlosx) = a50,%) w= Tle,slo,x)).

Clearly, since [1,1] = O, by chapter 5 we have defined an abelian group
with an associative multiplication. The one distributive law which is
nontrivial, is a consequence of 9.1.

Obviously, for every AeV, the ring R(A) from § 5 is a homomorphic
image of R(V).



11. GENERALIZATIONS: FP-VARIETIES

The crucial idea that eventually led us to the consideration of commuta-
tors was the idea of coordinatizing the congruence class geometry. The im-
portant results about modular varieties which were needed were:

1. that ccongruences on direct products permute with the factor congruences
and
2. the Shifting Lemma.

Clearly, as we have seen in Corollary 3.6, the Shifting Lemma in its gene-
ral form is equivalent to modularity. The first property however, is
strictly weaker. Thus let us define:

11.1 Definition: A variety V is called factor permutable (or in short:

Fp-variety) if every congruence relation on a direct product AxB of
algebras A,B ¢ V permutes with the canonical factor congruences Ty and
TI'2.

Recall that in general a factor congruence o« 1is a congruence for which
there exists another congruence B with aAB =0 and aep = 1.

As an example let us look at the variety W given by one ternary term
p(x,y,z) and a constant O, satisfying the equations

p(x,x,y)
p(x,0,0)

Y
X.

Then W 1is not a modular variety, indeed no equation is satisfied in all
congruences lattices of algebras in W. To witness, let S be any non-
empty set and 0¢S. On 4 := 8 v {0} define the ternary operation
p(x,y,2) by

X If yETE0
p(x,y,z) :=
z else.

Then clearly we obtain an algebra in W. Moreover, every partition of 3
together with the singleton class {0}, is a congruence relation of A.

On the other hand, to see that W is an FP-variety, let a congruence re-
lation © be givenon AxB ¢ W. Suppose X m ¥y @z, then for some

appropriate elements x (a;,03), v = (ay,by) and =z = (az,hj). It

follows

pl(ay,0,),(0,b,),(0,b4)) 0 p((a,;,b5),(0,0,),(0,0,))
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hence
(ai’bl) [¢] (a2’p(b3’b2’b1))’

thus with u := (az’p{bB’bE’bl)) we get x o u my z.

Other examples of FP-varieties which are not already modular include those
varieties studied by FRASER and HORN [10] and by HU [27]. Those are varie-
ties where congruences on direct products are products of congruences on
the factors.

A simple example from [10] is defined by the equations

X +0=0+x=x-1=%x, x-0=0. FRASER and HORN have given a Mal'-
cev-type description of their varieties. A similar description of FP-
varieties is as easy:

11.2 Theorem: A variety W is an FP-variety, if and only if there exist
natural numbers m,n > 1, a map k: {1,...,n} » {0,1}, (m+l)-ary terms

D binary terms rij and ternary terms 533 with 1 £4 < ny
1 < j = m such that the following egquations hold in W

(1) Xg = PylXp(qysTyq7-aTyp) '

(2) %y = p (X4 _p(n)sTnis**>Tnm’

(3 Lo pn(xi-k(n)’snl""’snm)

(%) Py (Xq y(i)sTi12 2 Tim) = pi+1(xk(i+1)’ri+1,1"“’ri+1,m)

forall I <n
(5)  Py(Xq_p(3yo5110-+255m) = Pie1(Fp(ae1)oSie1,12 250 e1,m)

for: all i <n.

Proof: The proof is by looking at the congruence relation e on the
direct product Eﬂ({xo,xi}) x EE({xo,xl,xa}) generated by the pair
((xo,xo),(xi,xi)}. The arguments are routine, see [23].

Note that adding the equation

Xy = Py(Xp(q)s8p10 0 s8yy)

to the above equations yields the condition of FRASER and HORN.
Remark: The case n=1 is particularly interesting. If k(1) = 1 then

W is a permutable variety with p(x,rl(y,z),...,rm(y,z)) being the
MAL'CEV term.

If k(1) =0 and m=1 we are left with the equations

{2y X

o p(xo,r(xG,xl))

(£2) p(xi,r{xo,xl))

(53) X2 p(Xi,S{xosxi,XE))
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11.3 Proposition: The equations 1, E2, I3 jointly imply that every
finite algebra in W generates a permutable variety.

Proof: I3 dimplies that the map p(a,-) is onto for every aclA. If A
is finite then p(a,-) must be 1-1. Equations 11 and :2 yield
p(x,r(x,y)) = p(x,r(y,x)), hence r(x,y) = r(y,x) be the above.

£1 alone yields p(x,r(x,y)) = p(x,r(x,z)) hence r(x,y) = r(x,z). Com-
bining this, r(x,y) = r(x,z) = r(z,x) = r(z,u) thus r(x,y) is a con-
stant, 0 := r(x,y).

Similarly, I3 gives 5(Xys%Xg5%,) = s(y,%x;,%;) hence s does not depend

on the first place, i.e. s(xo,xl,xg) =% u(xl,xa). Furthermore
p(xo,o) R p(xo,u(xa,xo}) so u(xo,xo) = 0. Combining this we define
d(xo,xl,xz) 22 p(xgsulxg,x5)),

then the above arguments show that d is a Mal'cev term on every finite
algebra.

The term d(x,y,z) as constructed above plays a central rdle in FP-
varieties:

11.4 Proposition: In every FP-variety W there exists a term d(x,y,z)
such that d(x,x,y) = y is an equation in W and for every congruence
relation @ on AxB with (ao,bo) 0 (al’bl) and for every ay € A
(d(ao,al,az),bo) completes the following parallelogram:

(a5,by) (aq,by)
e
/
/
’
s 0 g
/
£
(d(ao’aT’aZ)’bo) {ao,ho)

Proof: Depending on whether k(1) is 0 or 1 in the Mal'cev condi-
tion we define

dlx;¥y,8) = pl(x,sll(x,y,z),...,slm(x,y,z))
or

d(x,¥,2) := py(¥,5.41(%,¥,2),...,8, (x,y,2)).

Nowifor 1 < di<ing e 10,1)  we et

J
8y +7 pylay,854(a,8y,85),..0,55, (2 ,84,85))

and

Al Es
ty := pi(bj’ril(bo’bi)"‘"rim(bo’bl})'
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Then (sd,td) o (s¥,t¥) for j,k ¢ {0,1} and
b 1 1 Al

d(ao’al’aE)’bo? = {s%tl),ti(l)) -by equation (1),
(si'k(i),ti'k(l)) = (sk(1+1),tk€1+1}) by equations (5) and (4) and

i+l i
1-k(n) tl-k(n))
hiel

i+
(sn = (a2,h1) by equations (3) and (2). Thus

{d(ao,ai,ag),bo) ] (az,bl) by transitivity.

To see that d(x,%x,y) =y, set © :=wm; on AxA and b,=a,;=a,=x
and ay =bD =y. Then the above implies that
dlx,x,y) = dla,,a;,a,) = a, = y.

We do also have a weak replacement for the Shifting Lemma in an FB-variety,
i.e. it is clear that the Shifting Lemma 2.1 holds, provided g is a fac-
tor congruence.

As we have seen in the examples, we cannot expect the congruence class
geometry of algebras in FP-varieties to behave nicely on every algebra.
However, direct products are still comparatively well behaved, and coun-
terparts for closure theorems in the modular case can be found. Thus e.g.
the Cube lemma will have to be replaced By

11.5 The REIDEMEISTER~-theorem: Let © be a congruence relation on
AxB with eAn2=D. Then

[ayb;) (as,bs)
o
// e
fazyby)
\—""(azsbz}
(ag.b,)
(ao,bo) (az,bo)

implies (ao,ba) <} (al’bS)'

Proof: According to 11.4 we have (d(aE,as,al),bo) 6 (a,,by) hence
(d(aa,aS,al),bo) AT, (a,,b,) whence d(az,aB,ai) = a,.

It follows then from (d{a2'a3’a1}’b2) 5} (ai’bB) that (ao,b2) ] (al,b3)
which we claimed.

There is also a pendant to the Escher Cube which we will need later:

11.6 Lemma: Let © be a congruence relation on the direct product
AxB. If (az,bo) e} (ao,bz), (a;,b5) @ (az,bi) then (ai,bc) e (ao,bi).
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(a,,b,) (a,,b,]
’
Vd
7
(ao'bl)’ [32,b1)
(ao:bz) (31 :bz) (aszz)

Proof: Factor permutability accounts for the existence of 23, b with

{aB’bi) 2] (al’bB} <) {ao,bz). We apply d from 11.4 to obtain

5

d((aj’bl)’(aZ’bl)’(al’bl)) = (d(aE’a2’a1)’b1) and
d((ay5b3),(24,05),(87,04)) = (ay,d(bg,0,,04)).

Since corresponding entries in d are filled with congruent elements, we
get, using the geometrical properties of d from 11.4:

(a;,b ) @ {d{aB’aE’al)’bi) <] (al,d(bz,b2,b1)) ¢} (ao’bl)'

The following lemma is needed to throw us back into permutable varieties

in certain circumstances:

11.7 Lemma: Let AxB be a direct product of two algebras in an FP-
variety. If there exists a congruence relation © on AxB with
8 Vit = 1 and ©a Ty F O then A generates a permutable variety.

Proof: It is sufficient to show that d(ao,ai,al) =a holds for

8,58 € A arbitrarily chosen. Since 6v Ty = 1, there exist b,sb; € B
with (ao,bo) ) (al’bi)' Set a, := a;, then (d(ao,al,al},bo) <] (al’bl)
by 11.4, hence (d(ao’ai’al)’bo) AT, {ao,bo). Now the condition

oAm, = 0 forces d(ao,al,al) = H

Thus the characterization theorem for affine algebras in permutable va-
rieties from [16] carries over unchanged to FP-varieties. The commutator
machinery was used in [26] to carry the original result ([16], Theorem 4.7)
over to modular varieties. That it could be done without was shown in
[171. The above lemma shows that the original proof still works in the FP
case.

11.8 Theorem: Let A ©be an algebra in an FP-variety. Then the following

conditions are equivalent:

(1) A is affine

(ii) There exists a congruence relation 6 on AxA which is a common
complement of T and of

11'2.
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(iii) diag(A) = {(x,x)| xeAd} is a congruence class on AxA.

Proof: Only (iii) » (ii) needs a proof. The rest follows with 11.7 and
chapter 5.

Let ¥ be the congruence relation of which diag(A) is a class.

yvm, = 4 dig clearfor “2le {0 1} Ef ¥ ag,, 58Y, is different from O,
i.e. (a,b) ¥ (a,c) then the Shifting Lemma for w,, w5, and ¥ pro-
vides (b,b) ¥ (b,c), hence (b,c) e diag(A) i.e. Db=c.

As a particular example how to use the above theorem let us ask, in which
algebras in an FP-variety, the set of solutions of a family of eguations
can be described by congruence classes (as in the familiar example of
vector spaces). Simply look at the trivial equation x =y whose set of
solutions just consists of diag(A). Thus only modules over a commutative

ring R remain, as in the modular case Fplras

Similarly many results from CSAKANY [7] or [8], can directly be restated
for FP-varieties.

Let us define an algebra to be hamiltonian, if every subalgebra is a class
of some congruence relation.

Since diag(A) is always a subalgebra of AxA we get

11.9 Corollary: An algebra A in an FP-variety is affine, if and only
if AxA is hamiltonian.

If we look at varieties of affine algebras, then we may even step outside
the framework of FP-varieties. For this sake let us define:

An algebra A 1is called Jonsson-Tarski algebra, if it has a binary term
+ and a constant term O such that the equations x+0 = 0+X =X hold.

Thus Jonsson-Tarski algebras are just groupoids with unit with possibly
some more operations added. A deep theory of decompositions was developed
by JONSSON and TARSKI for those algebras in [30]1 (they required {0} to
be a subalgebra).

Clearly the examples of FP-varieties, cited at the beginning of this chap-

ter are Jonsson-Tarski-varieties on defining
x+y = plx;0,¥)-
We need a theorem due to KLUKOVITS [311:

11.10 Theorem: A variety V is hamiltonian, if and only if for every
term f(xl,...,xn) there exists a ternary term hf, such that the equa-

tion
f(X1’°“’xn) = hf(xo,f(xo,xz,...,xn),xi)

holds.
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‘ Proof: Given f, 1look at the free V-algebras over the generating set

J {xo,xl,...,xn}. Since the subalgebra U, generated by
{xo,xi,f(xo,xg,...,xn)} must be a congruence class, and f(xo,xa,...,xn),
considered as unary algebraic function z(xo), throws an element of o5
namely X, back into U, we need «t(x;) to be inside U. Thus t(x;)
has to be the result of a term hf applied to the generators of U.

For the other direction suppose S to be a subalgebra of A and 1(x) a
unary algebraic function on A, i.e. 1t(x) = f(x,az,...,an). If t(u)e 8
for some ueS, then for any other u'eS we get t(u') = hf(u,r(u),u'),
an element of §, thus S is a congruence class.

11.11 Theorem: Let ¥ be a hamiltonian variety of Jonsson-Tarski alge-
bras. Then V is polynomially equivalent to a variety of modules.

Proof: Set p(x,y,z) := h,(y,x,2).

Then
pix,x,2) = h (x,x,3) = h,(x,x+0,z) =
= 240 =
Tk
and
p(x,0,0) = h+(0,x,0) = h+(0,0+x,0) =
= Q+4x =
=X,

bringing us back inside an FP-variety.




12. KRONECKER PRODUCTS

We have frequently been encountered with situations where some (or all)
operations of an algebra A have properties which are commonly character-
istic for homomorphisms. A typical example is theorem 9.1. The equation
just says that every n-ary operation f(xl,...,xn) is an "n-ary homomor-
phism" with respect to +£(x,y,2). This statement is symmetric in the
sense, that it can be read as t(x,y,2z) being a ternary homomorphism with
regard to f(xi,...,xn). The importance of this property is evident in
the proof of 9.2.

Secondly, the kernel of a homomorphism is a congruence relation. In parti-
cular, suppose ¢: én —> A is an n-ary homomorphism and consider the
kernel of ¢. Suppose ¢(x,22,...,zn) E ¢(x,y2,...,yn} for some
X3Zp5+--323¥55---5¥,- Then the Shifting Lemma along factor congruence
implies: ¢(a,zz,l..,zn) = ¢(a,y2,...,ynl for every acA.

Thus in an FP-variety this property is formally the same as the term con-
dition from 6.7.

To put the discussion into a more general surrounding, let us look at ge-
neral categories C having finite products and let us define an algebra
(of type 4) in the category €. This is a C-object A together with

Tl
C-morphisms £y e Hom, (A Lo Ry

A V-algebra in C must also satisfy the equations given gy the variety V.

Equations have to be expressed by commutative diagram unless the category
is concrete.

For example, if T is the category of topological spaces, a V-algebra in
T 1is a topological V-algebra where every operation is continuous. If v
is idempotent then homotopy groups are Groups in V, see TAYLOR [371.

If P 1is the category of posets then algebras in P are supposed to have
all their operations order preserving. We will however only be concerned
with the case where C 1is a variety W of algebras.

Thus let A be a V-algebra in W, f an n-ary V-operation and g an m-
ary W-operation. Both f and g are defined on A but moreover f is a
homomorphism (with respect to the W-structure) from gn tc A. Thus for
elements xij e A with 1 <1 <m, 1< j s<n we have
f(g(xll,...,xml),...,g(xin,-..,xmn)) =

= g(f(xll"‘"xln)"’"f(xmi""’xmn})‘

Obviously the V-algebras in W form a variety of type by ua which we

W
denote by Ve#W and which we call the Kronecker product of E and W.

15



T4 H. PETER GUMM

Clearly VeW = WeV and V& (WeU) = (VeW) & U. As an example how to
deal with Kronecker products let us show

12.1 Proposition: (2) The Kronecker product of two permutable varieties

is affine and (b) the Kronecker product of a permutable variety with a
distributive variety is trivial.

Proof: (a) Let p, Tesp. d be the Mal'cev terms. Then

pla(x,y,¥),a(z,2,y),a(2z,2,2)) =
a(p(x,2,2),0(¥,2,2),a(¥,¥,2))
Q(X,¥,2)-

p(x,¥,2}

"
n

Hence p=g is a Mal'cev term commuting with itself. Thus theorem 4.7 in
[16] may be applied. Another way is by 9.1. For (b) let p be the Mal'cev
term for V and qy be the Jonsson terms for W, 1 s i <n. Letl n  be
as small as possible such that Jonsson terms Qg,--+59, exist. Depending
on whether n 1is odd or even we calculate:

a,_q(%,¥,2) = a4 (P(%,%,%),p(¥,%,%) sp(X,X,2)) =

"

= p{qn_l(x;?.x),qn,i(x,x,x),qn,itx,x,z))
= qn_i(x;xsz) = A
or

Qpq(%¥52) = a4 (P(X,%,%),P(¥,2,2),B(X,%,2)) =

= P(qn_g_(x;y,){},qn_l(X,Z,X),qn_l(X,Z,Z))

= q,.1(%,2,2) = 2,
in both cases contradicting the minimality of n.

If the terms defining the varieties V and W become more complicated,
this method of determining Veld is too cirecumstantial. For example, how
to set up the "pight" equations for the Kronecker product of two modular
varieties? How about two FP-varieties?

Here the geometric methods help us to circumvent the problem of setting up
the appropriate equations.

The first example considers Jonsson-Tarski-algebras in FP-varieties and

shows that they are abelian groups.

For modular varieties instead of FP-varieties the proof could have been
given right after chapter 4. Tt illuminates the usefulness of "thinking

in pictures". We make this clear by pointing out in every step, which geo-
metric picture is responsible for which algebraic property.

12.2 Proposition: Let +: gz —> A e a homomorphism such that for some
o ehy OEXE XFO = X, If A generates an FP-variety then + is an

abelian group operation.
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Proof: (i) + is cancellative (Shifting Lemma). If a+x = a+y, then
(a,x) ker+ (a,y), hence (o,x) ker+ (o,y) by the Shifting Lemma, i.e.
X 20+Xx = 0+y =y. Similarly x+a = y+a implies x=y.

Note that (i) is equivalent to ker+a T, = ker+ A m, = Q. We need this
for

(ii) + is associative (Reidemeister Configuration, Cube Lemma).
Since (y,z) ker+ (o,y+z), (y,0) ker+ (o,y) and (x,y) ker+ (o,xty)
we get from 11.5 that (x+y,z) ker+ (x,y+z) i.e. (x+y)+z = x+ (y+z).

(x*y,2) (y,z)
//
,I
(X,)’*Z) (0,)"“2)
'[x-ﬁy,o)- (y,o)
(x,y) (o,y)

(iii) + dis commutative (Escher Cube, resp. 11.6).

Since (o,y) ker+ (y,o0), (o0,x) ker+ (x,0) we get from 11.6 that
(x,y) ker+ (y,x) 1.e. Xx+y = y +X.

(x,y) (o,¥)

(y.,x}¢ (0,x)

(y,o0) (x,0)

(iv) Existence of an inverse (Factor permutability).
Given (x,0) ker+ (o,x), factor permutability provides an element a
with (o,0) ker+ (a,x) i.e. a+x = o.

(x,0) (0,0)

>
(0,x) (a,x)

15
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As a corollary:

12.3 Corollary: The Kronecker product of a Jonsson-Tarski-variety with
an FP-variety is polynomially equivalent to a variety of modules.

Proof: Suppose V 1s the Jonsson-Tarski-variety and W is the FP-varie-
ty. We know that + is an abelian group operation commuting with every
H—operation. From the geometrical property of the W-terms d(x,y,z) we
see that in fact d(x,y,2) = X-y *+2. Hence every other E—operation
commutes with x-y+z tToo.

With the help of 11.7 we get the same result for two FP-varieties:

12.4 Proposition: The Kronecker-product of two FP-varieties is polyno-
mially equivalent to a variety of modules.

Proof: Take A ¢ VeW and let f be an n-ary fundamental operation.
Say, f is a V-operation. If f(x,az,...,an) = f(x,bz,...,bn) then
(x,az,...,an) kerf (x,be,...,bn) where kerf 1is a W-congruence rela-
tion. Hence for all yeA we get f(y,aa,...,aﬁ) = f(y,ba,...,bn) be-
cause of the Shifting Lemma for W.

Therefore diag(A) is a congruence class for the V-operations and simi-
larly for the W-operations. With 11.7 and 11.8 the result follows.
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